Author: Kannan M. Krishnan
Publisher: Oxford University Press
ISBN: 0192566083
Category : Science
Languages : en
Pages : 869
Book Description
Characterization enables a microscopic understanding of the fundamental properties of materials (Science) to predict their macroscopic behaviour (Engineering). With this focus, Principles of Materials Characterization and Metrology presents a comprehensive discussion of the principles of materials characterization and metrology. Characterization techniques are introduced through elementary concepts of bonding, electronic structure of molecules and solids, and the arrangement of atoms in crystals. Then, the range of electrons, photons, ions, neutrons and scanning probes, used in characterization, including their generation and related beam-solid interactions that determine or limit their use, is presented. This is followed by ion-scattering methods, optics, optical diffraction, microscopy, and ellipsometry. Generalization of Fraunhofer diffraction to scattering by a three-dimensional arrangement of atoms in crystals leads to X-ray, electron, and neutron diffraction methods, both from surfaces and the bulk. Discussion of transmission and analytical electron microscopy, including recent developments, is followed by chapters on scanning electron microscopy and scanning probe microscopies. The book concludes with elaborate tables to provide a convenient and easily accessible way of summarizing the key points, features, and inter-relatedness of the different spectroscopy, diffraction, and imaging techniques presented throughout. Principles of Materials Characterization and Metrology uniquely combines a discussion of the physical principles and practical application of these characterization techniques to explain and illustrate the fundamental properties of a wide range of materials in a tool-based approach. Based on forty years of teaching and research, this book incorporates worked examples, to test the reader's knowledge with extensive questions and exercises.
Principles of Materials Characterization and Metrology
Author: Kannan M. Krishnan
Publisher: Oxford University Press
ISBN: 0192566083
Category : Science
Languages : en
Pages : 869
Book Description
Characterization enables a microscopic understanding of the fundamental properties of materials (Science) to predict their macroscopic behaviour (Engineering). With this focus, Principles of Materials Characterization and Metrology presents a comprehensive discussion of the principles of materials characterization and metrology. Characterization techniques are introduced through elementary concepts of bonding, electronic structure of molecules and solids, and the arrangement of atoms in crystals. Then, the range of electrons, photons, ions, neutrons and scanning probes, used in characterization, including their generation and related beam-solid interactions that determine or limit their use, is presented. This is followed by ion-scattering methods, optics, optical diffraction, microscopy, and ellipsometry. Generalization of Fraunhofer diffraction to scattering by a three-dimensional arrangement of atoms in crystals leads to X-ray, electron, and neutron diffraction methods, both from surfaces and the bulk. Discussion of transmission and analytical electron microscopy, including recent developments, is followed by chapters on scanning electron microscopy and scanning probe microscopies. The book concludes with elaborate tables to provide a convenient and easily accessible way of summarizing the key points, features, and inter-relatedness of the different spectroscopy, diffraction, and imaging techniques presented throughout. Principles of Materials Characterization and Metrology uniquely combines a discussion of the physical principles and practical application of these characterization techniques to explain and illustrate the fundamental properties of a wide range of materials in a tool-based approach. Based on forty years of teaching and research, this book incorporates worked examples, to test the reader's knowledge with extensive questions and exercises.
Publisher: Oxford University Press
ISBN: 0192566083
Category : Science
Languages : en
Pages : 869
Book Description
Characterization enables a microscopic understanding of the fundamental properties of materials (Science) to predict their macroscopic behaviour (Engineering). With this focus, Principles of Materials Characterization and Metrology presents a comprehensive discussion of the principles of materials characterization and metrology. Characterization techniques are introduced through elementary concepts of bonding, electronic structure of molecules and solids, and the arrangement of atoms in crystals. Then, the range of electrons, photons, ions, neutrons and scanning probes, used in characterization, including their generation and related beam-solid interactions that determine or limit their use, is presented. This is followed by ion-scattering methods, optics, optical diffraction, microscopy, and ellipsometry. Generalization of Fraunhofer diffraction to scattering by a three-dimensional arrangement of atoms in crystals leads to X-ray, electron, and neutron diffraction methods, both from surfaces and the bulk. Discussion of transmission and analytical electron microscopy, including recent developments, is followed by chapters on scanning electron microscopy and scanning probe microscopies. The book concludes with elaborate tables to provide a convenient and easily accessible way of summarizing the key points, features, and inter-relatedness of the different spectroscopy, diffraction, and imaging techniques presented throughout. Principles of Materials Characterization and Metrology uniquely combines a discussion of the physical principles and practical application of these characterization techniques to explain and illustrate the fundamental properties of a wide range of materials in a tool-based approach. Based on forty years of teaching and research, this book incorporates worked examples, to test the reader's knowledge with extensive questions and exercises.
Principles of Materials Characterization and Metrology
Author: Kannan M. Krishnan
Publisher:
ISBN: 9781523141265
Category : Materials
Languages : en
Pages : 869
Book Description
This book provides a comprehensive introduction to the principles of materials characterization and metrology. Based on several decades of teaching experience, it includes many worked examples, questions and exercises, suitable for students at the undergraduate or beginning graduate level.
Publisher:
ISBN: 9781523141265
Category : Materials
Languages : en
Pages : 869
Book Description
This book provides a comprehensive introduction to the principles of materials characterization and metrology. Based on several decades of teaching experience, it includes many worked examples, questions and exercises, suitable for students at the undergraduate or beginning graduate level.
Materials Characterization Using Nondestructive Evaluation (NDE) Methods
Author: Gerhard Huebschen
Publisher: Woodhead Publishing
ISBN: 008100057X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
Publisher: Woodhead Publishing
ISBN: 008100057X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
Springer Handbook of Metrology and Testing
Author: Horst Czichos
Publisher: Springer Science & Business Media
ISBN: 3642166415
Category : Technology & Engineering
Languages : en
Pages : 1244
Book Description
This Springer Handbook of Metrology and Testing presents the principles of Metrology – the science of measurement – and the methods and techniques of Testing – determining the characteristics of a given product – as they apply to chemical and microstructural analysis, and to the measurement and testing of materials properties and performance, including modelling and simulation. The principal motivation for this Handbook stems from the increasing demands of technology for measurement results that can be used globally. Measurements within a local laboratory or manufacturing facility must be able to be reproduced accurately anywhere in the world. The book integrates knowledge from basic sciences and engineering disciplines, compiled by experts from internationally known metrology and testing institutions, and academe, as well as from industry, and conformity-assessment and accreditation bodies. The Commission of the European Union has expressed this as there is no science without measurements, no quality without testing, and no global markets without standards.
Publisher: Springer Science & Business Media
ISBN: 3642166415
Category : Technology & Engineering
Languages : en
Pages : 1244
Book Description
This Springer Handbook of Metrology and Testing presents the principles of Metrology – the science of measurement – and the methods and techniques of Testing – determining the characteristics of a given product – as they apply to chemical and microstructural analysis, and to the measurement and testing of materials properties and performance, including modelling and simulation. The principal motivation for this Handbook stems from the increasing demands of technology for measurement results that can be used globally. Measurements within a local laboratory or manufacturing facility must be able to be reproduced accurately anywhere in the world. The book integrates knowledge from basic sciences and engineering disciplines, compiled by experts from internationally known metrology and testing institutions, and academe, as well as from industry, and conformity-assessment and accreditation bodies. The Commission of the European Union has expressed this as there is no science without measurements, no quality without testing, and no global markets without standards.
Metrology and Standardization for Nanotechnology
Author: Elisabeth Mansfield
Publisher: John Wiley & Sons
ISBN: 3527340394
Category : Technology & Engineering
Languages : en
Pages : 626
Book Description
For the promotion of global trading and the reduction of potential risks, the role of international standardization of nanotechnologies has become more and more important. This book gives an overview of the current status of nanotechnology including the importance of metrology and characterization at the nanoscale, international standardization of nanotechnology, and industrial innovation of nano-enabled products. First the field of nanometrology, nanomaterial standardization and nanomaterial innovation is introduced. Second, major concepts in analytical measurements are given in order to provide a basis for the reliable and reproducible characterization of nanomaterials. The role of standards organizations are presented and finally, an overview of risk management and the commercial impact of metrology and standardization for industrial innovations.
Publisher: John Wiley & Sons
ISBN: 3527340394
Category : Technology & Engineering
Languages : en
Pages : 626
Book Description
For the promotion of global trading and the reduction of potential risks, the role of international standardization of nanotechnologies has become more and more important. This book gives an overview of the current status of nanotechnology including the importance of metrology and characterization at the nanoscale, international standardization of nanotechnology, and industrial innovation of nano-enabled products. First the field of nanometrology, nanomaterial standardization and nanomaterial innovation is introduced. Second, major concepts in analytical measurements are given in order to provide a basis for the reliable and reproducible characterization of nanomaterials. The role of standards organizations are presented and finally, an overview of risk management and the commercial impact of metrology and standardization for industrial innovations.
X-Ray Metrology in Semiconductor Manufacturing
Author: D. Keith Bowen
Publisher: CRC Press
ISBN: 1420005650
Category : Technology & Engineering
Languages : en
Pages : 297
Book Description
The scales involved in modern semiconductor manufacturing and microelectronics continue to plunge downward. Effective and accurate characterization of materials with thicknesses below a few nanometers can be achieved using x-rays. While many books are available on the theory behind x-ray metrology (XRM), X-Ray Metrology in Semiconductor Manufacturing is the first book to focus on the practical aspects of the technology and its application in device fabrication and solving new materials problems. Following a general overview of the field, the first section of the book is organized by application and outlines the techniques that are best suited to each. The next section delves into the techniques and theory behind the applications, such as specular x-ray reflectivity, diffraction imaging, and defect mapping. Finally, the third section provides technological details of each technique, answering questions commonly encountered in practice. The authors supply real examples from the semiconductor and magnetic recording industries as well as more than 150 clearly drawn figures to illustrate the discussion. They also summarize the principles and key information about each method with inset boxes found throughout the text. Written by world leaders in the field, X-Ray Metrology in Semiconductor Manufacturing provides real solutions with a focus on accuracy, repeatability, and throughput.
Publisher: CRC Press
ISBN: 1420005650
Category : Technology & Engineering
Languages : en
Pages : 297
Book Description
The scales involved in modern semiconductor manufacturing and microelectronics continue to plunge downward. Effective and accurate characterization of materials with thicknesses below a few nanometers can be achieved using x-rays. While many books are available on the theory behind x-ray metrology (XRM), X-Ray Metrology in Semiconductor Manufacturing is the first book to focus on the practical aspects of the technology and its application in device fabrication and solving new materials problems. Following a general overview of the field, the first section of the book is organized by application and outlines the techniques that are best suited to each. The next section delves into the techniques and theory behind the applications, such as specular x-ray reflectivity, diffraction imaging, and defect mapping. Finally, the third section provides technological details of each technique, answering questions commonly encountered in practice. The authors supply real examples from the semiconductor and magnetic recording industries as well as more than 150 clearly drawn figures to illustrate the discussion. They also summarize the principles and key information about each method with inset boxes found throughout the text. Written by world leaders in the field, X-Ray Metrology in Semiconductor Manufacturing provides real solutions with a focus on accuracy, repeatability, and throughput.
Materials Characterization Techniques
Author: Sam Zhang
Publisher: CRC Press
ISBN: 1420042955
Category : Science
Languages : en
Pages : 344
Book Description
Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche
Publisher: CRC Press
ISBN: 1420042955
Category : Science
Languages : en
Pages : 344
Book Description
Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche
Engineering Metrology and Measurements
Author: Raghavendra,
Publisher: OUP India
ISBN: 9780198085492
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Engineering Metrology and Measurements is a textbook designed for students of mechanical, production and allied disciplines to facilitate learning of various shop-floor measurement techniques and also understand the basics of mechanical measurements.
Publisher: OUP India
ISBN: 9780198085492
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Engineering Metrology and Measurements is a textbook designed for students of mechanical, production and allied disciplines to facilitate learning of various shop-floor measurement techniques and also understand the basics of mechanical measurements.
A Practical Guide to Surface Metrology
Author: Michael Quinten
Publisher: Springer Nature
ISBN: 3030294544
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
This book offers a genuinely practical introduction to the most commonly encountered optical and non-optical systems used for the metrology and characterization of surfaces, including guidance on best practice, calibration, advantages and disadvantages, and interpretation of results. It enables the user to select the best approach in a given context. Most methods in surface metrology are based upon the interaction of light or electromagnetic radiation (UV, NIR, IR), and different optical effects are utilized to get a certain optical response from the surface; some of them record only the intensity reflected or scattered by the surface, others use interference of EM waves to obtain a characteristic response from the surface. The book covers techniques ranging from microscopy (including confocal, SNOM and digital holographic microscopy) through interferometry (including white light, multi-wavelength, grazing incidence and shearing) to spectral reflectometry and ellipsometry. The non-optical methods comprise tactile methods (stylus tip, AFM) as well as capacitive and inductive methods (capacitive sensors, eddy current sensors). The book provides: Overview of the working principles Description of advantages and disadvantages Currently achievable numbers for resolutions, repeatability, and reproducibility Examples of real-world applications A final chapter discusses examples where the combination of different surface metrology techniques in a multi-sensor system can reasonably contribute to a better understanding of surface properties as well as a faster characterization of surfaces in industrial applications. The book is aimed at scientists and engineers who use such methods for the measurement and characterization of surfaces across a wide range of fields and industries, including electronics, energy, automotive and medical engineering.
Publisher: Springer Nature
ISBN: 3030294544
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
This book offers a genuinely practical introduction to the most commonly encountered optical and non-optical systems used for the metrology and characterization of surfaces, including guidance on best practice, calibration, advantages and disadvantages, and interpretation of results. It enables the user to select the best approach in a given context. Most methods in surface metrology are based upon the interaction of light or electromagnetic radiation (UV, NIR, IR), and different optical effects are utilized to get a certain optical response from the surface; some of them record only the intensity reflected or scattered by the surface, others use interference of EM waves to obtain a characteristic response from the surface. The book covers techniques ranging from microscopy (including confocal, SNOM and digital holographic microscopy) through interferometry (including white light, multi-wavelength, grazing incidence and shearing) to spectral reflectometry and ellipsometry. The non-optical methods comprise tactile methods (stylus tip, AFM) as well as capacitive and inductive methods (capacitive sensors, eddy current sensors). The book provides: Overview of the working principles Description of advantages and disadvantages Currently achievable numbers for resolutions, repeatability, and reproducibility Examples of real-world applications A final chapter discusses examples where the combination of different surface metrology techniques in a multi-sensor system can reasonably contribute to a better understanding of surface properties as well as a faster characterization of surfaces in industrial applications. The book is aimed at scientists and engineers who use such methods for the measurement and characterization of surfaces across a wide range of fields and industries, including electronics, energy, automotive and medical engineering.
Springer Handbook of Materials Measurement Methods
Author: Horst Czichos
Publisher: Springer Science & Business Media
ISBN: 3540303006
Category : Technology & Engineering
Languages : en
Pages : 1215
Book Description
This Handbook compiles advanced methods for materials measurement and characterization from the macroscopic to the nano-scale. Materials professionals need not only handbooks of materials data but clear guidelines and standards for how to measure the full spectrum of materials characteristics of new materials ans systems. Since materials science forms a bridge between the more traditonal fields of physics, engineering, and chemistry, unifying the varying perspectives and covering the full gamut of properties also serves a useful purpose. This handbook is the first dedicated to these practical and important considerations.
Publisher: Springer Science & Business Media
ISBN: 3540303006
Category : Technology & Engineering
Languages : en
Pages : 1215
Book Description
This Handbook compiles advanced methods for materials measurement and characterization from the macroscopic to the nano-scale. Materials professionals need not only handbooks of materials data but clear guidelines and standards for how to measure the full spectrum of materials characteristics of new materials ans systems. Since materials science forms a bridge between the more traditonal fields of physics, engineering, and chemistry, unifying the varying perspectives and covering the full gamut of properties also serves a useful purpose. This handbook is the first dedicated to these practical and important considerations.