Principles of Copula Theory

Principles of Copula Theory PDF Author: Fabrizio Durante
Publisher: CRC Press
ISBN: 1439884447
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This book gives readers the solid and formal mathematical background to apply copulas to a range of mathematical areas, such as probability, real analysis, measure theory, and algebraic structures. The authors prove the results as simply as possible and unify various methods scattered throughout the literature in common frameworks, including shuffles of copulas. They also explore connections with related functions, such as quasi-copulas, semi-copulas, and triangular norms, that have been used in different domains.

Principles of Copula Theory

Principles of Copula Theory PDF Author: Fabrizio Durante
Publisher: CRC Press
ISBN: 1439884447
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This book gives readers the solid and formal mathematical background to apply copulas to a range of mathematical areas, such as probability, real analysis, measure theory, and algebraic structures. The authors prove the results as simply as possible and unify various methods scattered throughout the literature in common frameworks, including shuffles of copulas. They also explore connections with related functions, such as quasi-copulas, semi-copulas, and triangular norms, that have been used in different domains.

An Introduction to Copulas

An Introduction to Copulas PDF Author: Roger B. Nelsen
Publisher: Springer Science & Business Media
ISBN: 1475730764
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
Copulas are functions that join multivariate distribution functions to their one-dimensional margins. The study of copulas and their role in statistics is a new but vigorously growing field. In this book the student or practitioner of statistics and probability will find discussions of the fundamental properties of copulas and some of their primary applications. The applications include the study of dependence and measures of association, and the construction of families of bivariate distributions. With nearly a hundred examples and over 150 exercises, this book is suitable as a text or for self-study. The only prerequisite is an upper level undergraduate course in probability and mathematical statistics, although some familiarity with nonparametric statistics would be useful. Knowledge of measure-theoretic probability is not required. Roger B. Nelsen is Professor of Mathematics at Lewis & Clark College in Portland, Oregon. He is also the author of "Proofs Without Words: Exercises in Visual Thinking," published by the Mathematical Association of America.

Analyzing Dependent Data with Vine Copulas

Analyzing Dependent Data with Vine Copulas PDF Author: Claudia Czado
Publisher:
ISBN: 9783030137861
Category : Copulas (Mathematical statistics)
Languages : en
Pages :

Get Book Here

Book Description
This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications. It focuses on statistical estimation and selection methods for vine copulas in data applications. These flexible copula models can successfully accommodate any form of tail dependence and are vital to many applications in finance, insurance, hydrology, marketing, engineering, chemistry, aviation, climatology and health. The book explains the pair-copula construction principles underlying these statistical models and discusses how to perform model selection and inference. It also derives simulation algorithms and presents real-world examples to illustrate the methodological concepts. The book includes numerous exercises that facilitate and deepen readers understanding, and demonstrates how the R package VineCopula can be used to explore and build statistical dependence models from scratch. In closing, the book provides insights into recent developments and open research questions in vine copula based modeling. The book is intended for students as well as statisticians, data analysts and any other quantitatively oriented researchers who are new to the field of vine copulas. Accordingly, it provides the necessary background in multivariate statistics and copula theory for exploratory data tools, so that readers only need a basic grasp of statistics and probability.

Semiotic Principles in Semantic Theory

Semiotic Principles in Semantic Theory PDF Author: Neal R. Norrick
Publisher: John Benjamins Publishing
ISBN: 9027280940
Category : Language Arts & Disciplines
Languages : en
Pages : 268

Get Book Here

Book Description
This study represents a contribution to the theory of meaning in natural language. It proposes a semantic theory containing a set of regular relational principles. These principles enable semantic theory to describe connections from the lexical reading of a word to its figurative contextual reading, from one variant reading of a polysemous lexical item to another, from the idiomatic to its literal reading or to the literal reading(s) of one or more of its component lexical items. Semiotic theory provides a foundation by supplying principles defining motivated expression-content relations for signs generally. The author argues that regular semantic relational principles must dervive from such semiotic principles, to ensures the psychological reality and generality of the semantic principles.

Copula Theory and Its Applications

Copula Theory and Its Applications PDF Author: Piotr Jaworski
Publisher: Springer Science & Business Media
ISBN: 3642124658
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - "Surveys" contains 11 chapters that provide an up-to-date account of essential aspects of copula models. Part II - "Contributions" collects the extended versions of 6 talks selected from papers presented at the workshop in Warsaw.

Elements of Copula Modeling with R

Elements of Copula Modeling with R PDF Author: Marius Hofert
Publisher: Springer
ISBN: 3319896350
Category : Business & Economics
Languages : en
Pages : 274

Get Book Here

Book Description
This book introduces the main theoretical findings related to copulas and shows how statistical modeling of multivariate continuous distributions using copulas can be carried out in the R statistical environment with the package copula (among others). Copulas are multivariate distribution functions with standard uniform univariate margins. They are increasingly applied to modeling dependence among random variables in fields such as risk management, actuarial science, insurance, finance, engineering, hydrology, climatology, and meteorology, to name a few. In the spirit of the Use R! series, each chapter combines key theoretical definitions or results with illustrations in R. Aimed at statisticians, actuaries, risk managers, engineers and environmental scientists wanting to learn about the theory and practice of copula modeling using R without an overwhelming amount of mathematics, the book can also be used for teaching a course on copula modeling.

Copulas and Dependence Models with Applications

Copulas and Dependence Models with Applications PDF Author: Manuel Úbeda Flores
Publisher: Springer
ISBN: 3319642219
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
This book presents contributions and review articles on the theory of copulas and their applications. The authoritative and refereed contributions review the latest findings in the area with emphasis on “classical” topics like distributions with fixed marginals, measures of association, construction of copulas with given additional information, etc. The book celebrates the 75th birthday of Professor Roger B. Nelsen and his outstanding contribution to the development of copula theory. Most of the book’s contributions were presented at the conference “Copulas and Their Applications” held in his honor in Almería, Spain, July 3-5, 2017. The chapter 'When Gumbel met Galambos' is published open access under a CC BY 4.0 license.

Convolution Copula Econometrics

Convolution Copula Econometrics PDF Author: Umberto Cherubini
Publisher: Springer
ISBN: 3319480154
Category : Business & Economics
Languages : en
Pages : 99

Get Book Here

Book Description
This book presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.

Introduction to Bayesian Estimation and Copula Models of Dependence

Introduction to Bayesian Estimation and Copula Models of Dependence PDF Author: Arkady Shemyakin
Publisher: John Wiley & Sons
ISBN: 1118959035
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
Presents an introduction to Bayesian statistics, presents an emphasis on Bayesian methods (prior and posterior), Bayes estimation, prediction, MCMC,Bayesian regression, and Bayesian analysis of statistical modelsof dependence, and features a focus on copulas for risk management Introduction to Bayesian Estimation and Copula Models of Dependence emphasizes the applications of Bayesian analysis to copula modeling and equips readers with the tools needed to implement the procedures of Bayesian estimation in copula models of dependence. This book is structured in two parts: the first four chapters serve as a general introduction to Bayesian statistics with a clear emphasis on parametric estimation and the following four chapters stress statistical models of dependence with a focus of copulas. A review of the main concepts is discussed along with the basics of Bayesian statistics including prior information and experimental data, prior and posterior distributions, with an emphasis on Bayesian parametric estimation. The basic mathematical background of both Markov chains and Monte Carlo integration and simulation is also provided. The authors discuss statistical models of dependence with a focus on copulas and present a brief survey of pre-copula dependence models. The main definitions and notations of copula models are summarized followed by discussions of real-world cases that address particular risk management problems. In addition, this book includes: • Practical examples of copulas in use including within the Basel Accord II documents that regulate the world banking system as well as examples of Bayesian methods within current FDA recommendations • Step-by-step procedures of multivariate data analysis and copula modeling, allowing readers to gain insight for their own applied research and studies • Separate reference lists within each chapter and end-of-the-chapter exercises within Chapters 2 through 8 • A companion website containing appendices: data files and demo files in Microsoft® Office Excel®, basic code in R, and selected exercise solutions Introduction to Bayesian Estimation and Copula Models of Dependence is a reference and resource for statisticians who need to learn formal Bayesian analysis as well as professionals within analytical and risk management departments of banks and insurance companies who are involved in quantitative analysis and forecasting. This book can also be used as a textbook for upper-undergraduate and graduate-level courses in Bayesian statistics and analysis. ARKADY SHEMYAKIN, PhD, is Professor in the Department of Mathematics and Director of the Statistics Program at the University of St. Thomas. A member of the American Statistical Association and the International Society for Bayesian Analysis, Dr. Shemyakin's research interests include informationtheory, Bayesian methods of parametric estimation, and copula models in actuarial mathematics, finance, and engineering. ALEXANDER KNIAZEV, PhD, is Associate Professor and Head of the Department of Mathematics at Astrakhan State University in Russia. Dr. Kniazev's research interests include representation theory of Lie algebras and finite groups, mathematical statistics, econometrics, and financial mathematics.

Hierarchical Archimedean Copulas

Hierarchical Archimedean Copulas PDF Author: Jan Górecki
Publisher: Springer Nature
ISBN: 3031563379
Category :
Languages : en
Pages : 128

Get Book Here

Book Description