Author: J. Edward Jackson
Publisher: John Wiley & Sons
ISBN: 0471725323
Category : Mathematics
Languages : en
Pages : 597
Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of A User’s Guide to Principal Components "The book is aptly and correctly named–A User’s Guide. It is the kind of book that a user at any level, novice or skilled practitioner, would want to have at hand for autotutorial, for refresher, or as a general-purpose guide through the maze of modern PCA." –Technometrics "I recommend A User’s Guide to Principal Components to anyone who is running multivariate analyses, or who contemplates performing such analyses. Those who write their own software will find the book helpful in designing better programs. Those who use off-the-shelf software will find it invaluable in interpreting the results." –Mathematical Geology
A User's Guide to Principal Components
Author: J. Edward Jackson
Publisher: John Wiley & Sons
ISBN: 0471725323
Category : Mathematics
Languages : en
Pages : 597
Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of A User’s Guide to Principal Components "The book is aptly and correctly named–A User’s Guide. It is the kind of book that a user at any level, novice or skilled practitioner, would want to have at hand for autotutorial, for refresher, or as a general-purpose guide through the maze of modern PCA." –Technometrics "I recommend A User’s Guide to Principal Components to anyone who is running multivariate analyses, or who contemplates performing such analyses. Those who write their own software will find the book helpful in designing better programs. Those who use off-the-shelf software will find it invaluable in interpreting the results." –Mathematical Geology
Publisher: John Wiley & Sons
ISBN: 0471725323
Category : Mathematics
Languages : en
Pages : 597
Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of A User’s Guide to Principal Components "The book is aptly and correctly named–A User’s Guide. It is the kind of book that a user at any level, novice or skilled practitioner, would want to have at hand for autotutorial, for refresher, or as a general-purpose guide through the maze of modern PCA." –Technometrics "I recommend A User’s Guide to Principal Components to anyone who is running multivariate analyses, or who contemplates performing such analyses. Those who write their own software will find the book helpful in designing better programs. Those who use off-the-shelf software will find it invaluable in interpreting the results." –Mathematical Geology
Principal Components Analysis
Author: George H. Dunteman
Publisher: SAGE
ISBN: 9780803931046
Category : Mathematics
Languages : en
Pages : 98
Book Description
For anyone in need of a concise, introductory guide to principal components analysis, this book is a must. Through an effective use of simple mathematical-geometrical and multiple real-life examples (such as crime statistics, indicators of drug abuse, and educational expenditures) -- and by minimizing the use of matrix algebra -- the reader can quickly master and put this technique to immediate use.
Publisher: SAGE
ISBN: 9780803931046
Category : Mathematics
Languages : en
Pages : 98
Book Description
For anyone in need of a concise, introductory guide to principal components analysis, this book is a must. Through an effective use of simple mathematical-geometrical and multiple real-life examples (such as crime statistics, indicators of drug abuse, and educational expenditures) -- and by minimizing the use of matrix algebra -- the reader can quickly master and put this technique to immediate use.
Handbook of Inter-Rater Reliability, 4th Edition
Author: Kilem L. Gwet
Publisher: Advanced Analytics, LLC
ISBN: 0970806280
Category : Medical
Languages : en
Pages : 429
Book Description
The third edition of this book was very well received by researchers working in many different fields of research. The use of that text also gave these researchers the opportunity to raise questions, and express additional needs for materials on techniques poorly covered in the literature. For example, when designing an inter-rater reliability study, many researchers wanted to know how to determine the optimal number of raters and the optimal number of subjects that should participate in the experiment. Also, very little space in the literature has been devoted to the notion of intra-rater reliability, particularly for quantitative measurements. The fourth edition of this text addresses those needs, in addition to further refining the presentation of the material already covered in the third edition. Features of the Fourth Edition include: New material on sample size calculations for chance-corrected agreement coefficients, as well as for intraclass correlation coefficients. The researcher will be able to determine the optimal number raters, subjects, and trials per subject.The chapter entitled “Benchmarking Inter-Rater Reliability Coefficients” has been entirely rewritten.The introductory chapter has been substantially expanded to explore possible definitions of the notion of inter-rater reliability.All chapters have been revised to a large extent to improve their readability.
Publisher: Advanced Analytics, LLC
ISBN: 0970806280
Category : Medical
Languages : en
Pages : 429
Book Description
The third edition of this book was very well received by researchers working in many different fields of research. The use of that text also gave these researchers the opportunity to raise questions, and express additional needs for materials on techniques poorly covered in the literature. For example, when designing an inter-rater reliability study, many researchers wanted to know how to determine the optimal number of raters and the optimal number of subjects that should participate in the experiment. Also, very little space in the literature has been devoted to the notion of intra-rater reliability, particularly for quantitative measurements. The fourth edition of this text addresses those needs, in addition to further refining the presentation of the material already covered in the third edition. Features of the Fourth Edition include: New material on sample size calculations for chance-corrected agreement coefficients, as well as for intraclass correlation coefficients. The researcher will be able to determine the optimal number raters, subjects, and trials per subject.The chapter entitled “Benchmarking Inter-Rater Reliability Coefficients” has been entirely rewritten.The introductory chapter has been substantially expanded to explore possible definitions of the notion of inter-rater reliability.All chapters have been revised to a large extent to improve their readability.
Python Data Science Handbook
Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609
Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609
Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Practical Guide To Principal Component Methods in R
Author: Alboukadel KASSAMBARA
Publisher: STHDA
ISBN: 1975721136
Category : Education
Languages : en
Pages : 171
Book Description
Although there are several good books on principal component methods (PCMs) and related topics, we felt that many of them are either too theoretical or too advanced. This book provides a solid practical guidance to summarize, visualize and interpret the most important information in a large multivariate data sets, using principal component methods in R. The visualization is based on the factoextra R package that we developed for creating easily beautiful ggplot2-based graphs from the output of PCMs. This book contains 4 parts. Part I provides a quick introduction to R and presents the key features of FactoMineR and factoextra. Part II describes classical principal component methods to analyze data sets containing, predominantly, either continuous or categorical variables. These methods include: Principal Component Analysis (PCA, for continuous variables), simple correspondence analysis (CA, for large contingency tables formed by two categorical variables) and Multiple CA (MCA, for a data set with more than 2 categorical variables). In Part III, you'll learn advanced methods for analyzing a data set containing a mix of variables (continuous and categorical) structured or not into groups: Factor Analysis of Mixed Data (FAMD) and Multiple Factor Analysis (MFA). Part IV covers hierarchical clustering on principal components (HCPC), which is useful for performing clustering with a data set containing only categorical variables or with a mixed data of categorical and continuous variables.
Publisher: STHDA
ISBN: 1975721136
Category : Education
Languages : en
Pages : 171
Book Description
Although there are several good books on principal component methods (PCMs) and related topics, we felt that many of them are either too theoretical or too advanced. This book provides a solid practical guidance to summarize, visualize and interpret the most important information in a large multivariate data sets, using principal component methods in R. The visualization is based on the factoextra R package that we developed for creating easily beautiful ggplot2-based graphs from the output of PCMs. This book contains 4 parts. Part I provides a quick introduction to R and presents the key features of FactoMineR and factoextra. Part II describes classical principal component methods to analyze data sets containing, predominantly, either continuous or categorical variables. These methods include: Principal Component Analysis (PCA, for continuous variables), simple correspondence analysis (CA, for large contingency tables formed by two categorical variables) and Multiple CA (MCA, for a data set with more than 2 categorical variables). In Part III, you'll learn advanced methods for analyzing a data set containing a mix of variables (continuous and categorical) structured or not into groups: Factor Analysis of Mixed Data (FAMD) and Multiple Factor Analysis (MFA). Part IV covers hierarchical clustering on principal components (HCPC), which is useful for performing clustering with a data set containing only categorical variables or with a mixed data of categorical and continuous variables.
Principal Component Analysis
Author: I.T. Jolliffe
Publisher: Springer Science & Business Media
ISBN: 1475719043
Category : Mathematics
Languages : en
Pages : 283
Book Description
Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.
Publisher: Springer Science & Business Media
ISBN: 1475719043
Category : Mathematics
Languages : en
Pages : 283
Book Description
Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.
Handbook of Robust Low-Rank and Sparse Matrix Decomposition
Author: Thierry Bouwmans
Publisher: CRC Press
ISBN: 1315353539
Category : Computers
Languages : en
Pages : 510
Book Description
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.
Publisher: CRC Press
ISBN: 1315353539
Category : Computers
Languages : en
Pages : 510
Book Description
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.
Beginner's Guide to Principal Components
Author: Kilem Li Gwet
Publisher: Agreestat Analytics
ISBN: 9781792354625
Category : Mathematics
Languages : en
Pages : 148
Book Description
The Beginner's Guide to Principal Components is a book that introduces beginner readers to the field of principal component analysis. Principal component analysis was invented in the beginning of the twentieth century and has been extensively used by statisticians and social scientists. It has found new applications in the era of big data and artificial intelligence. With a growing number of users of principal component analysis, comes the need to present the materials for a broader audience with limited mathematical background, but with a clear desire to understand how the techniques work. This book does not require a strong background in linear algebra. All concepts related to linear or matrix algebra and needed to understand the principal components will be introduce at a basic level. However, any prior exposure to linear or matrix algebra will be helpful. The more you want to understand principal components, the deeper you need to delve into the underlying mathematics. - One can use any of the software products that implement principal component analysis, without having to worry about the underlying mathematics. However, I advise that you develop some understanding of the logic and the mechanics of principal component analysis before you start crunching numbers. - This book introduces the Excel template pca.xlsm, which can be downloaded for free at https: //agreestat.com/books/pca/pca.xlsm. I expect Excel users to find it useful for implementing the different techniques discussed in this book. Non Excel users have a few free alternative options such as the R software.
Publisher: Agreestat Analytics
ISBN: 9781792354625
Category : Mathematics
Languages : en
Pages : 148
Book Description
The Beginner's Guide to Principal Components is a book that introduces beginner readers to the field of principal component analysis. Principal component analysis was invented in the beginning of the twentieth century and has been extensively used by statisticians and social scientists. It has found new applications in the era of big data and artificial intelligence. With a growing number of users of principal component analysis, comes the need to present the materials for a broader audience with limited mathematical background, but with a clear desire to understand how the techniques work. This book does not require a strong background in linear algebra. All concepts related to linear or matrix algebra and needed to understand the principal components will be introduce at a basic level. However, any prior exposure to linear or matrix algebra will be helpful. The more you want to understand principal components, the deeper you need to delve into the underlying mathematics. - One can use any of the software products that implement principal component analysis, without having to worry about the underlying mathematics. However, I advise that you develop some understanding of the logic and the mechanics of principal component analysis before you start crunching numbers. - This book introduces the Excel template pca.xlsm, which can be downloaded for free at https: //agreestat.com/books/pca/pca.xlsm. I expect Excel users to find it useful for implementing the different techniques discussed in this book. Non Excel users have a few free alternative options such as the R software.
An Introduction to Applied Multivariate Analysis with R
Author: Brian Everitt
Publisher: Springer Science & Business Media
ISBN: 1441996508
Category : Mathematics
Languages : en
Pages : 284
Book Description
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Publisher: Springer Science & Business Media
ISBN: 1441996508
Category : Mathematics
Languages : en
Pages : 284
Book Description
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
An Easy Guide to Factor Analysis
Author: Paul Kline
Publisher: Routledge
ISBN: 1317725603
Category : Psychology
Languages : en
Pages : 203
Book Description
Factor analysis is a statistical technique widely used in psychology and the social sciences. With the advent of powerful computers, factor analysis and other multivariate methods are now available to many more people. An Easy Guide to Factor Analysis presents and explains factor analysis as clearly and simply as possible. The author, Paul Kline, carefully defines all statistical terms and demonstrates step-by-step how to work out a simple example of principal components analysis and rotation. He further explains other methods of factor analysis, including confirmatory and path analysis, and concludes with a discussion of the use of the technique with various examples. An Easy Guide to Factor Analysis is the clearest, most comprehensible introduction to factor analysis for students. All those who need to use statistics in psychology and the social sciences will find it invaluable. Paul Kline is Professor of Psychometrics at the University of Exeter. He has been using and teaching factor analysis for thirty years. His previous books include Intelligence: the psychometric view (Routledge 1990) and The Handbook of Psychological Testing (Routledge 1992).
Publisher: Routledge
ISBN: 1317725603
Category : Psychology
Languages : en
Pages : 203
Book Description
Factor analysis is a statistical technique widely used in psychology and the social sciences. With the advent of powerful computers, factor analysis and other multivariate methods are now available to many more people. An Easy Guide to Factor Analysis presents and explains factor analysis as clearly and simply as possible. The author, Paul Kline, carefully defines all statistical terms and demonstrates step-by-step how to work out a simple example of principal components analysis and rotation. He further explains other methods of factor analysis, including confirmatory and path analysis, and concludes with a discussion of the use of the technique with various examples. An Easy Guide to Factor Analysis is the clearest, most comprehensible introduction to factor analysis for students. All those who need to use statistics in psychology and the social sciences will find it invaluable. Paul Kline is Professor of Psychometrics at the University of Exeter. He has been using and teaching factor analysis for thirty years. His previous books include Intelligence: the psychometric view (Routledge 1990) and The Handbook of Psychological Testing (Routledge 1992).