A Primer on the Dirichlet Space

A Primer on the Dirichlet Space PDF Author: Omar El-Fallah
Publisher: Cambridge University Press
ISBN: 1107729777
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students.

The Dirichlet Space and Related Function Spaces

The Dirichlet Space and Related Function Spaces PDF Author: Nicola Arcozzi
Publisher: American Mathematical Soc.
ISBN: 1470450828
Category : Mathematics
Languages : en
Pages : 559

Get Book Here

Book Description
The study of the classical Dirichlet space is one of the central topics on the intersection of the theory of holomorphic functions and functional analysis. It was introduced about100 years ago and continues to be an area of active current research. The theory is related to such important themes as multipliers, reproducing kernels, and Besov spaces, among others. The authors present the theory of the Dirichlet space and related spaces starting with classical results and including some quite recent achievements like Dirichlet-type spaces of functions in several complex variables and the corona problem. The first part of this book is an introduction to the function theory and operator theory of the classical Dirichlet space, a space of holomorphic functions on the unit disk defined by a smoothness criterion. The Dirichlet space is also a Hilbert space with a reproducing kernel, and is the model for the dyadic Dirichlet space, a sequence space defined on the dyadic tree. These various viewpoints are used to study a range of topics including the Pick property, multipliers, Carleson measures, boundary values, zero sets, interpolating sequences, the local Dirichlet integral, shift invariant subspaces, and Hankel forms. Recurring themes include analogies, sometimes weak and sometimes strong, with the classical Hardy space; and the analogy with the dyadic Dirichlet space. The final chapters of the book focus on Besov spaces of holomorphic functions on the complex unit ball, a class of Banach spaces generalizing the Dirichlet space. Additional techniques are developed to work with the nonisotropic complex geometry, including a useful invariant definition of local oscillation and a sophisticated variation on the dyadic Dirichlet space. Descriptions are obtained of multipliers, Carleson measures, interpolating sequences, and multiplier interpolating sequences; estimates are obtained to prove corona theorems.

Lectures on Analytic Function Spaces and their Applications

Lectures on Analytic Function Spaces and their Applications PDF Author: Javad Mashreghi
Publisher: Springer Nature
ISBN: 3031335724
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
The focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They have essential applications in other fields of mathematics and engineering. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins—the Bergman space A2, the Dirichlet space D, the model subspaces Kt, and the de Branges-Rovnyak spaces H(b)—have also garnered attention in recent decades. Leading experts on function spaces gathered and discussed new achievements and future venues of research on analytic function spaces, their operators, and their applications in other domains. With over 250 hours of lectures by prominent mathematicians, the program spanned a wide variety of topics. More explicitly, there were courses and workshops on Interpolation and Sampling, Riesz Bases, Frames and Signal Processing, Bounded Mean Oscillation, de Branges-Rovnyak Spaces, Blaschke Products and Inner Functions, and Convergence of Scattering Data and Non-linear Fourier Transform, among others. At the end of each week, there was a high-profile colloquium talk on the current topic. The program also contained two advanced courses on Schramm Loewner Evolution and Lattice Models and Reproducing Kernel Hilbert Space of Analytic Functions. This volume features the courses given on Hardy Spaces, Dirichlet Spaces, Bergman Spaces, Model Spaces, Operators on Function Spaces, Truncated Toeplitz Operators, Semigroups of weighted composition operators on spaces of holomorphic functions, the Corona Problem, Non-commutative Function Theory, and Drury-Arveson Space. This volume is a valuable resource for researchers interested in analytic function spaces.

A Primer on the Dirichlet Space

A Primer on the Dirichlet Space PDF Author:
Publisher:
ISBN: 9781107730465
Category : Dirichlet principle
Languages : en
Pages : 228

Get Book Here

Book Description
The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqu.

Analysis of Operators on Function Spaces

Analysis of Operators on Function Spaces PDF Author: Alexandru Aleman
Publisher: Springer
ISBN: 3030146405
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.

Primer on the Dirichlet Space

Primer on the Dirichlet Space PDF Author: Omar El-Fallah. Karim Kellay. Javad Mashreghi. Thomas Ransford
Publisher:
ISBN: 9781107721104
Category :
Languages : en
Pages :

Get Book Here

Book Description


Introduction to Model Spaces and their Operators

Introduction to Model Spaces and their Operators PDF Author: Stephan Ramon Garcia
Publisher: Cambridge University Press
ISBN: 1107108748
Category : Mathematics
Languages : en
Pages : 339

Get Book Here

Book Description
A self-contained textbook which opens up this challenging field to newcomers and points to areas of future research.

Slenderness

Slenderness PDF Author: Radoslav Milan Dimitric
Publisher: Cambridge University Press
ISBN: 110847442X
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
A leading expert presents a unified concept of slenderness in Abelian categories, with numerous open problems and exercises.

Probability on Real Lie Algebras

Probability on Real Lie Algebras PDF Author: Uwe Franz
Publisher: Cambridge University Press
ISBN: 110712865X
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
This monograph is a progressive introduction to non-commutativity in probability theory, summarizing and synthesizing recent results about classical and quantum stochastic processes on Lie algebras. In the early chapters, focus is placed on concrete examples of the links between algebraic relations and the moments of probability distributions. The subsequent chapters are more advanced and deal with Wigner densities for non-commutative couples of random variables, non-commutative stochastic processes with independent increments (quantum Lévy processes), and the quantum Malliavin calculus. This book will appeal to advanced undergraduate and graduate students interested in the relations between algebra, probability, and quantum theory. It also addresses a more advanced audience by covering other topics related to non-commutativity in stochastic calculus, Lévy processes, and the Malliavin calculus.

Justification Logic

Justification Logic PDF Author: Sergei Artemov
Publisher: Cambridge University Press
ISBN: 1108661106
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
Classical logic is concerned, loosely, with the behaviour of truths. Epistemic logic similarly is about the behaviour of known or believed truths. Justification logic is a theory of reasoning that enables the tracking of evidence for statements and therefore provides a logical framework for the reliability of assertions. This book, the first in the area, is a systematic account of the subject, progressing from modal logic through to the establishment of an arithmetic interpretation of intuitionistic logic. The presentation is mathematically rigorous but in a style that will appeal to readers from a wide variety of areas to which the theory applies. These include mathematical logic, artificial intelligence, computer science, philosophical logic and epistemology, linguistics, and game theory.