Preparation and Crystal Growth of Materials with Layered Structures

Preparation and Crystal Growth of Materials with Layered Structures PDF Author: R.M.A. Lieth
Publisher: Springer Science & Business Media
ISBN: 9401727503
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
The goal of the series Physics and Chemistry of Materials with Layered Structures is to give a critical survey of our present knowledge on a large family of materials which can be described as solids containing molecules which in two dimensions extend to infinity and which are loosely stacked on top of each other to form three dimensional crystals. Of course, the physics and chemistry of these crystals are specific chapters in ordinary solid state science, and many a scientist hunting for new phenomena has in the past been disappointed to find that materials with layered structures are not entirely exotic. Their electron and phonon states are not two dimensional, and the high hopes held by some for spectacular dimensionality effects in superconductivity were shattered. Nevertheless, the structural features and their physical and chemical consequences singularize layered structures sufficiently to make them a fascinating subject of research. This is all the more true since they are met in insulators and semiconductors as well as in normal and superconducting metals. Although for the time being the series is intentionally limited to cover inorganic materials only, the many known organic layered structures may well be the subject of future volumes. Among the noteworthy peculiarities of layered structures, we mention specific growth mechanisms and crystal habits. Polytypism is very common and it is fasci nating indeed to find up to 240 different polytypes in the same chemical substance.

Preparation and Crystal Growth of Materials with Layered Structures

Preparation and Crystal Growth of Materials with Layered Structures PDF Author: R.M.A. Lieth
Publisher: Springer Science & Business Media
ISBN: 9401727503
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
The goal of the series Physics and Chemistry of Materials with Layered Structures is to give a critical survey of our present knowledge on a large family of materials which can be described as solids containing molecules which in two dimensions extend to infinity and which are loosely stacked on top of each other to form three dimensional crystals. Of course, the physics and chemistry of these crystals are specific chapters in ordinary solid state science, and many a scientist hunting for new phenomena has in the past been disappointed to find that materials with layered structures are not entirely exotic. Their electron and phonon states are not two dimensional, and the high hopes held by some for spectacular dimensionality effects in superconductivity were shattered. Nevertheless, the structural features and their physical and chemical consequences singularize layered structures sufficiently to make them a fascinating subject of research. This is all the more true since they are met in insulators and semiconductors as well as in normal and superconducting metals. Although for the time being the series is intentionally limited to cover inorganic materials only, the many known organic layered structures may well be the subject of future volumes. Among the noteworthy peculiarities of layered structures, we mention specific growth mechanisms and crystal habits. Polytypism is very common and it is fasci nating indeed to find up to 240 different polytypes in the same chemical substance.

Preparation and Crystal Growth of Materials with Layered Structures

Preparation and Crystal Growth of Materials with Layered Structures PDF Author: R. M. A. Lieth
Publisher:
ISBN: 9789401727518
Category :
Languages : en
Pages : 292

Get Book Here

Book Description


Magnetic Properties of Layered Transition Metal Compounds

Magnetic Properties of Layered Transition Metal Compounds PDF Author: L.J. de Jongh
Publisher: Springer Science & Business Media
ISBN: 9400918607
Category : Science
Languages : en
Pages : 430

Get Book Here

Book Description
In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.

Crystallography and Crystal Chemistry of Materials with Layered Structures

Crystallography and Crystal Chemistry of Materials with Layered Structures PDF Author: F.A. Lévy
Publisher: Springer Science & Business Media
ISBN: 9401014337
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
In the last ten years, the chemistry and physics of materials with layered structures became an intensively investigated field in the study of the solid state. Research into physical properties of these crystals and especially investigations of their physical anisotropy related to the structural anisotropy has led to remarkable and perplexing results. Most of the layered materials exist in several polytypic modifications and can include stacking faults. The crystal structures are therefore complex and it became apparent that there was a great need for a review of the crystallographic data of materials approximating two-dimensional solids. This second volume in the series 'Physics and Chemistry of Materials with Layered Structures' has been written by specialists of different classes of layered materials. Structural data are reviewed and the most important relations between the structure and the chemical and physical properties are emphasized. The first three contributions are devoted to the transition metal dichalcogenides whose physical properties have been investigated in detail. The crystallographic data and crystal growth conditions are presented in the first paper. The second paper constitutes an incisive review of the phase transformations and charge density waves which have been observed in the metallic dichalcogenides. In two contributions the layered structures of newer ternary compounds are de scribed and the connection between structure and non-stoichiometry is discussed.

Carbyne and Carbynoid Structures

Carbyne and Carbynoid Structures PDF Author: R.B. Heimann
Publisher: Springer Science & Business Media
ISBN: 9401147426
Category : Technology & Engineering
Languages : en
Pages : 450

Get Book Here

Book Description
This is a book on one of the most fascinating and controversial areas in contemporary science of carbon, chemistry, and materials science. It concisely summarizes the state of the art in topical and critical reviews written by professionals in this and related fields.

Neutron Scattering in Layered Copper-Oxide Superconductors

Neutron Scattering in Layered Copper-Oxide Superconductors PDF Author: Albert Furrer
Publisher: Springer Science & Business Media
ISBN: 9401512841
Category : Science
Languages : en
Pages : 416

Get Book Here

Book Description
The phenomenon of superconductivity - after its discovery in metals such as mercury, lead, zinc, etc. by Kamerlingh-Onnes in 19]] - has attracted many scientists. Superconductivity was described in a very satisfactory manner by the model proposed by Bardeen, Cooper and Schrieffer, and by the extensions proposed by Abrikosov, Gorkov and Eliashberg. Relations were established between superconductivity and the fundamental properties of solids, resulting in a possible upper limit of the critical temperature at about 23 K. The breakthrough that revolutionized the field was made in 1986 by Bednorz and Muller with the discovery of high-temperature superconductivity in layered copper-oxide perovskites. Today the record in transition temperature is 133 K for a Hg based cuprate system. The last decade has not only seen a revolution in the size of the critical temperature, but also in the myriads of research groups that entered the field. In addition, high-temperature superconductivity became a real interdisciplinary topic and brought together physicists, chemists and materials scientists who started to investigate the new compounds with almost all the available experimental techniques and theoretical methods. As a consequence we have witnessed an avalanche of publications which has never occurred in any field of science so far and which makes it difficult for the individual to be thoroughly informed about the relevant results and trends. Neutron scattering has outstanding properties in the elucidation of the basic properties of high-temperature superconductors.

Two-Dimensional Electron Systems

Two-Dimensional Electron Systems PDF Author: E.Y. Andrei
Publisher: Springer Science & Business Media
ISBN: 9401512868
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
Recent studies on two-dimensional systems have led to new insights into the fascinating interplay between physical properties and dimensionality. Many of these ideas have emerged from work on electrons bound to the surface of a weakly polarizable substrate such as liquid helium or solid hydrogen. The research on this subject continues to be at the forefront of modern condensed matter physics because of its fundamental simplicity as well as its connection to technologically useful devices. This book is the first comprehensive overview of experimental and theoretical research in this exciting field. It is intended to provide a coherent introduction for graduate students and non-experts, while at the same time serving as a reference source for active researchers in the field. The chapters are written by individuals who made significant contributions and cover a variety of specialized topics. These include the origin of the surface states, tunneling and magneto-tunneling out of these states, the phase diagram, collective excitations, transport and magneto-transport.

Photoelectrochemistry and Photovoltaics of Layered Semiconductors

Photoelectrochemistry and Photovoltaics of Layered Semiconductors PDF Author: A. Aruchamy
Publisher: Springer Science & Business Media
ISBN: 9401513015
Category : Science
Languages : en
Pages : 367

Get Book Here

Book Description
This volume aims at bringing together the results of extensive research done during the last fifteen years on the interfacial photoelectronic properties of the inorganic layered semiconducting materials, mainly in relation to solar energy conversion. Significant contributions have been made both on the fundamental aspects of interface characteristics and on the suitability of the layered materials in photoelectrochemical (semiconductor/electrolyte junctions) and in solid state photovoltaic(Schottky and p-n junctions) cells. New insights into the physical and chemical characteristics of the contact surfaces have been gained and many new applications of these materials have been revealed. In particular, the basal plane surface of the layered materials shows low chemical reactivity and specific electronic behaviour with respect to isotropic solids. In electrochemical systems, the inert nature of these surfaces characterized by saturated chemical bonds has been recognized from studies on charge transfer reactions and catalysis. In addition, studies on the role of the d-band electronic transitions and the dynamics of the photogene rated charge carriers in the relative stability of the photoelectrodes of the transition metal dichalcogenides have deepened the understanding of the interfacial photoreactions. Transition metal layered compounds are also recognized as ideal model compounds for the studies Involving surfaces: photoreactions, adsorption phenomena and catalysis, scanning tunneling microscopy and spectroscopy and epitaxial growth of thin films. Recently, quantum size effects have been investigated in layered semiconductor colloids.

Physics and Chemistry of Metal Cluster Compounds

Physics and Chemistry of Metal Cluster Compounds PDF Author: L.J. de Jongh
Publisher: Springer Science & Business Media
ISBN: 9401512949
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
On Friday, February 20, 1980, I had the pleasure to be present at the inaugural lecture of my colleague Jan Reedijk, who had just been named at the Chair of Inorganic Chemistry of Leiden University. According to tradition, the ceremony took place in the impressive Hall of the old University Academy Building. In the course of his lecture, Jan mentioned a number of recent developments in chemistry which had struck him as particularly important or interesting. Among those was the synthesis of large metal cluster compounds, and, to my luck, he showed a slide ofthe molecular structure of [PtI9(C)b]4-. (To my luck, since at traditional Leiden University it is quite unusual to show slides at such ceremonies.) This constituted my first acquaintance with this exciting new class of materials. I became immediately fascinated by this molecule, partly because of the esthetic beauty of its fivefold symmetry, partly because as a physicist it struck me that it could be visualized as an "embryonically small" metal particle, embedded in a shell of CO ligands.

Electron Spectroscopies Applied to Low-Dimensional Structures

Electron Spectroscopies Applied to Low-Dimensional Structures PDF Author: H.P. Hughes
Publisher: Springer Science & Business Media
ISBN: 0306471264
Category : Science
Languages : en
Pages : 513

Get Book Here

Book Description
The effect of reduced dimensionality, inherent at the crystallographic level, on the electronic properties of low dimensional materials can be dramatic, leading to structural and electronic instabilities—including supercond- tivity at high temperatures, charge density waves, and localisation—which continue to attract widespread interest. The layered transition metal dichalcogenides have engaged attention for many years, partly arising from the charge density wave effects which some show and the controlled way in which their properties can be modified by intercalation, while the development of epitaxial growth techniques has opened up promising areas based on dichalcogenide heterostructures and quantum wells. The discovery of high-temperature superconducting oxides, and the realisation that polymeric materials too can be exploited in a controlled way for various opto-electronic applications, have further sti- lated interest in the effects of structural dimensionality. It seems timely therefore to draw together some strands of recent research involving a range of disparate materials which share some common char- teristics of low dimensionality. This resulting volume is aimed at researchers with specialist interests in the particular materials discussed but who may also wish to examine the related phenomena observed in different systems, and at a more general solid state audience with broad interests in electronic properties and low dimensional phenomena. Space limitations have required us to be selective as regards particular materials, though we have managed to include those as dissimilar as polymeric semiconductors, superconducting oxides, bronzes and layered chalcogenides.