Author: Are Magnus Bruaset
Publisher: Routledge
ISBN: 1351469363
Category : Mathematics
Languages : en
Pages : 180
Book Description
The problem of solving large, sparse, linear systems of algebraic equations is vital in scientific computing, even for applications originating from quite different fields. A Survey of Preconditioned Iterative Methods presents an up to date overview of iterative methods for numerical solution of such systems. Typically, the methods considered are w
A Survey of Preconditioned Iterative Methods
Author: Are Magnus Bruaset
Publisher: Routledge
ISBN: 1351469363
Category : Mathematics
Languages : en
Pages : 180
Book Description
The problem of solving large, sparse, linear systems of algebraic equations is vital in scientific computing, even for applications originating from quite different fields. A Survey of Preconditioned Iterative Methods presents an up to date overview of iterative methods for numerical solution of such systems. Typically, the methods considered are w
Publisher: Routledge
ISBN: 1351469363
Category : Mathematics
Languages : en
Pages : 180
Book Description
The problem of solving large, sparse, linear systems of algebraic equations is vital in scientific computing, even for applications originating from quite different fields. A Survey of Preconditioned Iterative Methods presents an up to date overview of iterative methods for numerical solution of such systems. Typically, the methods considered are w
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications
Author: Daniele Bertaccini
Publisher: CRC Press
ISBN: 1351649612
Category : Mathematics
Languages : en
Pages : 321
Book Description
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.
Publisher: CRC Press
ISBN: 1351649612
Category : Mathematics
Languages : en
Pages : 321
Book Description
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.
Iterative Krylov Methods for Large Linear Systems
Author: H. A. van der Vorst
Publisher: Cambridge University Press
ISBN: 9780521818285
Category : Mathematics
Languages : en
Pages : 242
Book Description
Table of contents
Publisher: Cambridge University Press
ISBN: 9780521818285
Category : Mathematics
Languages : en
Pages : 242
Book Description
Table of contents
Matrix Preconditioning Techniques and Applications
Author: Ke Chen
Publisher: Cambridge University Press
ISBN: 9780521838283
Category : Mathematics
Languages : en
Pages : 616
Book Description
A comprehensive introduction to preconditioning techniques, now an essential part of successful and efficient iterative solutions of matrices.
Publisher: Cambridge University Press
ISBN: 9780521838283
Category : Mathematics
Languages : en
Pages : 616
Book Description
A comprehensive introduction to preconditioning techniques, now an essential part of successful and efficient iterative solutions of matrices.
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs
Author: Josef Malek
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Iterative Methods for Linear Systems
Author: Maxim A. Olshanskii
Publisher: SIAM
ISBN: 1611973465
Category : Mathematics
Languages : en
Pages : 257
Book Description
Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??
Publisher: SIAM
ISBN: 1611973465
Category : Mathematics
Languages : en
Pages : 257
Book Description
Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??
Iterative Solution Methods
Author: Owe Axelsson
Publisher: Cambridge University Press
ISBN: 9780521555692
Category : Mathematics
Languages : en
Pages : 676
Book Description
This book deals primarily with the numerical solution of linear systems of equations by iterative methods. The first part of the book is intended to serve as a textbook for a numerical linear algebra course. The material assumes the reader has a basic knowledge of linear algebra, such as set theory and matrix algebra, however it is demanding for students who are not afraid of theory. To assist the reader, the more difficult passages have been marked, the definitions for each chapter are collected at the beginning of the chapter, and numerous exercises are included throughout the text. The second part of the book serves as a monograph introducing recent results in the iterative solution of linear systems, mainly using preconditioned conjugate gradient methods. This book should be a valuable resource for students and researchers alike wishing to learn more about iterative methods.
Publisher: Cambridge University Press
ISBN: 9780521555692
Category : Mathematics
Languages : en
Pages : 676
Book Description
This book deals primarily with the numerical solution of linear systems of equations by iterative methods. The first part of the book is intended to serve as a textbook for a numerical linear algebra course. The material assumes the reader has a basic knowledge of linear algebra, such as set theory and matrix algebra, however it is demanding for students who are not afraid of theory. To assist the reader, the more difficult passages have been marked, the definitions for each chapter are collected at the beginning of the chapter, and numerous exercises are included throughout the text. The second part of the book serves as a monograph introducing recent results in the iterative solution of linear systems, mainly using preconditioned conjugate gradient methods. This book should be a valuable resource for students and researchers alike wishing to learn more about iterative methods.
Templates for the Solution of Linear Systems
Author: Richard Barrett
Publisher: SIAM
ISBN: 9781611971538
Category : Mathematics
Languages : en
Pages : 141
Book Description
In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.
Publisher: SIAM
ISBN: 9781611971538
Category : Mathematics
Languages : en
Pages : 141
Book Description
In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.
Iterative Methods for Large Linear Systems
Author: David Ronald Kincaid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 360
Book Description
Very Good,No Highlights or Markup,all pages are intact.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 360
Book Description
Very Good,No Highlights or Markup,all pages are intact.