Author: Gary K. Yeap
Publisher: Springer Science & Business Media
ISBN: 1461560659
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
Practical Low Power Digital VLSI Design emphasizes the optimization and trade-off techniques that involve power dissipation, in the hope that the readers are better prepared the next time they are presented with a low power design problem. The book highlights the basic principles, methodologies and techniques that are common to most CMOS digital designs. The advantages and disadvantages of a particular low power technique are discussed. Besides the classical area-performance trade-off, the impact to design cycle time, complexity, risk, testability and reusability are discussed. The wide impacts to all aspects of design are what make low power problems challenging and interesting. Heavy emphasis is given to top-down structured design style, with occasional coverage in the semicustom design methodology. The examples and design techniques cited have been known to be applied to production scale designs or laboratory settings. The goal of Practical Low Power Digital VLSI Design is to permit the readers to practice the low power techniques using current generation design style and process technology. Practical Low Power Digital VLSI Design considers a wide range of design abstraction levels spanning circuit, logic, architecture and system. Substantial basic knowledge is provided for qualitative and quantitative analysis at the different design abstraction levels. Low power techniques are presented at the circuit, logic, architecture and system levels. Special techniques that are specific to some key areas of digital chip design are discussed as well as some of the low power techniques that are just appearing on the horizon. Practical Low Power Digital VLSI Design will be of benefit to VLSI design engineers and students who have a fundamental knowledge of CMOS digital design.
Practical Low Power Digital VLSI Design
Author: Gary K. Yeap
Publisher: Springer Science & Business Media
ISBN: 1461560659
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
Practical Low Power Digital VLSI Design emphasizes the optimization and trade-off techniques that involve power dissipation, in the hope that the readers are better prepared the next time they are presented with a low power design problem. The book highlights the basic principles, methodologies and techniques that are common to most CMOS digital designs. The advantages and disadvantages of a particular low power technique are discussed. Besides the classical area-performance trade-off, the impact to design cycle time, complexity, risk, testability and reusability are discussed. The wide impacts to all aspects of design are what make low power problems challenging and interesting. Heavy emphasis is given to top-down structured design style, with occasional coverage in the semicustom design methodology. The examples and design techniques cited have been known to be applied to production scale designs or laboratory settings. The goal of Practical Low Power Digital VLSI Design is to permit the readers to practice the low power techniques using current generation design style and process technology. Practical Low Power Digital VLSI Design considers a wide range of design abstraction levels spanning circuit, logic, architecture and system. Substantial basic knowledge is provided for qualitative and quantitative analysis at the different design abstraction levels. Low power techniques are presented at the circuit, logic, architecture and system levels. Special techniques that are specific to some key areas of digital chip design are discussed as well as some of the low power techniques that are just appearing on the horizon. Practical Low Power Digital VLSI Design will be of benefit to VLSI design engineers and students who have a fundamental knowledge of CMOS digital design.
Publisher: Springer Science & Business Media
ISBN: 1461560659
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
Practical Low Power Digital VLSI Design emphasizes the optimization and trade-off techniques that involve power dissipation, in the hope that the readers are better prepared the next time they are presented with a low power design problem. The book highlights the basic principles, methodologies and techniques that are common to most CMOS digital designs. The advantages and disadvantages of a particular low power technique are discussed. Besides the classical area-performance trade-off, the impact to design cycle time, complexity, risk, testability and reusability are discussed. The wide impacts to all aspects of design are what make low power problems challenging and interesting. Heavy emphasis is given to top-down structured design style, with occasional coverage in the semicustom design methodology. The examples and design techniques cited have been known to be applied to production scale designs or laboratory settings. The goal of Practical Low Power Digital VLSI Design is to permit the readers to practice the low power techniques using current generation design style and process technology. Practical Low Power Digital VLSI Design considers a wide range of design abstraction levels spanning circuit, logic, architecture and system. Substantial basic knowledge is provided for qualitative and quantitative analysis at the different design abstraction levels. Low power techniques are presented at the circuit, logic, architecture and system levels. Special techniques that are specific to some key areas of digital chip design are discussed as well as some of the low power techniques that are just appearing on the horizon. Practical Low Power Digital VLSI Design will be of benefit to VLSI design engineers and students who have a fundamental knowledge of CMOS digital design.
Low-Power Digital VLSI Design
Author: Abdellatif Bellaouar
Publisher: Springer Science & Business Media
ISBN: 1461523559
Category : Technology & Engineering
Languages : en
Pages : 539
Book Description
Low-Power Digital VLSI Design: Circuits and Systems addresses both process technologies and device modeling. Power dissipation in CMOS circuits, several practical circuit examples, and low-power techniques are discussed. Low-voltage issues for digital CMOS and BiCMOS circuits are emphasized. The book also provides an extensive study of advanced CMOS subsystem design. A low-power design methodology is presented with various power minimization techniques at the circuit, logic, architecture and algorithm levels. Features: Low-voltage CMOS device modeling, technology files, design rules Switching activity concept, low-power guidelines to engineering practice Pass-transistor logic families Power dissipation of I/O circuits Multi- and low-VT CMOS logic, static power reduction circuit techniques State of the art design of low-voltage BiCMOS and CMOS circuits Low-power techniques in CMOS SRAMS and DRAMS Low-power on-chip voltage down converter design Numerous advanced CMOS subsystems (e.g. adders, multipliers, data path, memories, regular structures, phase-locked loops) with several design options trading power, delay and area Low-power design methodology, power estimation techniques Power reduction techniques at the logic, architecture and algorithm levels More than 190 circuits explained at the transistor level.
Publisher: Springer Science & Business Media
ISBN: 1461523559
Category : Technology & Engineering
Languages : en
Pages : 539
Book Description
Low-Power Digital VLSI Design: Circuits and Systems addresses both process technologies and device modeling. Power dissipation in CMOS circuits, several practical circuit examples, and low-power techniques are discussed. Low-voltage issues for digital CMOS and BiCMOS circuits are emphasized. The book also provides an extensive study of advanced CMOS subsystem design. A low-power design methodology is presented with various power minimization techniques at the circuit, logic, architecture and algorithm levels. Features: Low-voltage CMOS device modeling, technology files, design rules Switching activity concept, low-power guidelines to engineering practice Pass-transistor logic families Power dissipation of I/O circuits Multi- and low-VT CMOS logic, static power reduction circuit techniques State of the art design of low-voltage BiCMOS and CMOS circuits Low-power techniques in CMOS SRAMS and DRAMS Low-power on-chip voltage down converter design Numerous advanced CMOS subsystems (e.g. adders, multipliers, data path, memories, regular structures, phase-locked loops) with several design options trading power, delay and area Low-power design methodology, power estimation techniques Power reduction techniques at the logic, architecture and algorithm levels More than 190 circuits explained at the transistor level.
Low Power VLSI Design and Technology
Author: Gary K. Yeap
Publisher: World Scientific
ISBN: 9789810225186
Category : Technology & Engineering
Languages : en
Pages : 136
Book Description
Low-power and low-energy VLSI has become an important issue in today's consumer electronics.This book is a collection of pioneering applied research papers in low power VLSI design and technology.A comprehensive introductory chapter presents the current status of the industry and academic research in the area of low power VLSI design and technology.Other topics cover logic synthesis, floorplanning, circuit design and analysis, from the perspective of low power requirements.The readers will have a sampling of some key problems in this area as the low power solutions span the entire spectrum of the design process. The book also provides excellent references on up-to-date research and development issues with practical solution techniques.
Publisher: World Scientific
ISBN: 9789810225186
Category : Technology & Engineering
Languages : en
Pages : 136
Book Description
Low-power and low-energy VLSI has become an important issue in today's consumer electronics.This book is a collection of pioneering applied research papers in low power VLSI design and technology.A comprehensive introductory chapter presents the current status of the industry and academic research in the area of low power VLSI design and technology.Other topics cover logic synthesis, floorplanning, circuit design and analysis, from the perspective of low power requirements.The readers will have a sampling of some key problems in this area as the low power solutions span the entire spectrum of the design process. The book also provides excellent references on up-to-date research and development issues with practical solution techniques.
Low Power Design Essentials
Author: Jan Rabaey
Publisher: Springer Science & Business Media
ISBN: 0387717137
Category : Technology & Engineering
Languages : en
Pages : 371
Book Description
This book contains all the topics of importance to the low power designer. It first lays the foundation and then goes on to detail the design process. The book also discusses such special topics as power management and modal design, ultra low power, and low power design methodology and flows. In addition, coverage includes projections of the future and case studies.
Publisher: Springer Science & Business Media
ISBN: 0387717137
Category : Technology & Engineering
Languages : en
Pages : 371
Book Description
This book contains all the topics of importance to the low power designer. It first lays the foundation and then goes on to detail the design process. The book also discusses such special topics as power management and modal design, ultra low power, and low power design methodology and flows. In addition, coverage includes projections of the future and case studies.
Digital Integrated Circuit Design
Author: Hubert Kaeslin
Publisher: Cambridge University Press
ISBN: 0521882672
Category : Technology & Engineering
Languages : en
Pages : 878
Book Description
This practical, tool-independent guide to designing digital circuits takes a unique, top-down approach, reflecting the nature of the design process in industry. Starting with architecture design, the book comprehensively explains the why and how of digital circuit design, using the physics designers need to know, and no more.
Publisher: Cambridge University Press
ISBN: 0521882672
Category : Technology & Engineering
Languages : en
Pages : 878
Book Description
This practical, tool-independent guide to designing digital circuits takes a unique, top-down approach, reflecting the nature of the design process in industry. Starting with architecture design, the book comprehensively explains the why and how of digital circuit design, using the physics designers need to know, and no more.
Low-Voltage/Low-Power Integrated Circuits and Systems
Author: Edgar Sánchez-Sinencio
Publisher: Wiley-IEEE Press
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 594
Book Description
Electrical Engineering Low-Voltage/Low-Power Integrated Circuits and Systems Low-Voltage Mixed-Signal Circuits Leading experts in the field present this collection of original contributions as a practical approach to low-power analog and digital circuit theory and design, illustrated with important applications and examples. Low-Voltage/Low-Power Integrated Circuits and Systems features comprehensive coverage of the latest techniques for the design, modeling, and characterization of low-power analog and digital circuits. Low-Voltage/Low-Power Integrated Circuits and Systems will help you improve your understanding of the trade-offs between analog and digital circuits and systems. It is an invaluable resource for enhancing your designs. This book is intended for senior and graduate students. It is also intended as a key reference for designers in the semiconductor and communication industries. Highlighted applications include: Low-voltage analog filters Low-power multiplierless YUV to RGB based on human vision perception Micropower systems for implantable defibrillators and pacemakers Neuromorphic systems Low-power design in telecom circuits
Publisher: Wiley-IEEE Press
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 594
Book Description
Electrical Engineering Low-Voltage/Low-Power Integrated Circuits and Systems Low-Voltage Mixed-Signal Circuits Leading experts in the field present this collection of original contributions as a practical approach to low-power analog and digital circuit theory and design, illustrated with important applications and examples. Low-Voltage/Low-Power Integrated Circuits and Systems features comprehensive coverage of the latest techniques for the design, modeling, and characterization of low-power analog and digital circuits. Low-Voltage/Low-Power Integrated Circuits and Systems will help you improve your understanding of the trade-offs between analog and digital circuits and systems. It is an invaluable resource for enhancing your designs. This book is intended for senior and graduate students. It is also intended as a key reference for designers in the semiconductor and communication industries. Highlighted applications include: Low-voltage analog filters Low-power multiplierless YUV to RGB based on human vision perception Micropower systems for implantable defibrillators and pacemakers Neuromorphic systems Low-power design in telecom circuits
VLSI Design
Author: K. Lal Kishore
Publisher: I. K. International Pvt Ltd
ISBN: 9380026676
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
Aimed primarily for undergraduate students pursuing courses in VLSI design, the book emphasizes the physical understanding of underlying principles of the subject. It not only focuses on circuit design process obeying VLSI rules but also on technological aspects of Fabrication. VHDL modeling is discussed as the design engineer is expected to have good knowledge of it. Various Modeling issues of VLSI devices are focused which includes necessary device physics to the required level. With such an in-depth coverage and practical approach practising engineers can also use this as ready reference. Key features: Numerous practical examples. Questions with solutions that reflect the common doubts a beginner encounters. Device Fabrication Technology. Testing of CMOS device BiCMOS Technological issues. Industry trends. Emphasis on VHDL.
Publisher: I. K. International Pvt Ltd
ISBN: 9380026676
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
Aimed primarily for undergraduate students pursuing courses in VLSI design, the book emphasizes the physical understanding of underlying principles of the subject. It not only focuses on circuit design process obeying VLSI rules but also on technological aspects of Fabrication. VHDL modeling is discussed as the design engineer is expected to have good knowledge of it. Various Modeling issues of VLSI devices are focused which includes necessary device physics to the required level. With such an in-depth coverage and practical approach practising engineers can also use this as ready reference. Key features: Numerous practical examples. Questions with solutions that reflect the common doubts a beginner encounters. Device Fabrication Technology. Testing of CMOS device BiCMOS Technological issues. Industry trends. Emphasis on VHDL.
The Design of Low-Voltage, Low-Power Sigma-Delta Modulators
Author: Shahriar Rabii
Publisher: Springer Science & Business Media
ISBN: 1461551056
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
Oversampling techniques based on sigma-delta modulation are widely used to implement the analog/digital interfaces in CMOS VLSI technologies. This approach is relatively insensitive to imperfections in the manufacturing process and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in the low-voltage environment that is increasingly demanded by advanced VLSI technologies and by portable electronic systems. In The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, an analysis of power dissipation in sigma-delta modulators is presented, and a low-voltage implementation of a digital-audio performance A/D converter based on the results of this analysis is described. Although significant power savings can typically be achieved in digital circuits by reducing the power supply voltage, the power dissipation in analog circuits actually tends to increase with decreasing supply voltages. Oversampling architectures are a potentially power-efficient means of implementing high-resolution A/D converters because they reduce the number and complexity of the analog circuits in comparison with Nyquist-rate converters. In fact, it is shown that the power dissipation of a sigma-delta modulator can approach that of a single integrator with the resolution and bandwidth required for a given application. In this research the influence of various parameters on the power dissipation of the modulator has been evaluated and strategies for the design of a power-efficient implementation have been identified. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators begins with an overview of A/D conversion, emphasizing sigma-delta modulators. It includes a detailed analysis of noise in sigma-delta modulators, analyzes power dissipation in integrator circuits, and addresses practical issues in the circuit design and testing of a high-resolution modulator. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.
Publisher: Springer Science & Business Media
ISBN: 1461551056
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
Oversampling techniques based on sigma-delta modulation are widely used to implement the analog/digital interfaces in CMOS VLSI technologies. This approach is relatively insensitive to imperfections in the manufacturing process and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in the low-voltage environment that is increasingly demanded by advanced VLSI technologies and by portable electronic systems. In The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, an analysis of power dissipation in sigma-delta modulators is presented, and a low-voltage implementation of a digital-audio performance A/D converter based on the results of this analysis is described. Although significant power savings can typically be achieved in digital circuits by reducing the power supply voltage, the power dissipation in analog circuits actually tends to increase with decreasing supply voltages. Oversampling architectures are a potentially power-efficient means of implementing high-resolution A/D converters because they reduce the number and complexity of the analog circuits in comparison with Nyquist-rate converters. In fact, it is shown that the power dissipation of a sigma-delta modulator can approach that of a single integrator with the resolution and bandwidth required for a given application. In this research the influence of various parameters on the power dissipation of the modulator has been evaluated and strategies for the design of a power-efficient implementation have been identified. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators begins with an overview of A/D conversion, emphasizing sigma-delta modulators. It includes a detailed analysis of noise in sigma-delta modulators, analyzes power dissipation in integrator circuits, and addresses practical issues in the circuit design and testing of a high-resolution modulator. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.
Logic Synthesis for Low Power VLSI Designs
Author: Sasan Iman
Publisher: Springer Science & Business Media
ISBN: 1461554535
Category : Technology & Engineering
Languages : en
Pages : 239
Book Description
Logic Synthesis for Low Power VLSI Designs presents a systematic and comprehensive treatment of power modeling and optimization at the logic level. More precisely, this book provides a detailed presentation of methodologies, algorithms and CAD tools for power modeling, estimation and analysis, synthesis and optimization at the logic level. Logic Synthesis for Low Power VLSI Designs contains detailed descriptions of technology-dependent logic transformations and optimizations, technology decomposition and mapping, and post-mapping structural optimization techniques for low power. It also emphasizes the trade-off techniques for two-level and multi-level logic circuits that involve power dissipation and circuit speed, in the hope that the readers can better understand the issues and ways of achieving their power dissipation goal while meeting the timing constraints. Logic Synthesis for Low Power VLSI Designs is written for VLSI design engineers, CAD professionals, and students who have had a basic knowledge of CMOS digital design and logic synthesis.
Publisher: Springer Science & Business Media
ISBN: 1461554535
Category : Technology & Engineering
Languages : en
Pages : 239
Book Description
Logic Synthesis for Low Power VLSI Designs presents a systematic and comprehensive treatment of power modeling and optimization at the logic level. More precisely, this book provides a detailed presentation of methodologies, algorithms and CAD tools for power modeling, estimation and analysis, synthesis and optimization at the logic level. Logic Synthesis for Low Power VLSI Designs contains detailed descriptions of technology-dependent logic transformations and optimizations, technology decomposition and mapping, and post-mapping structural optimization techniques for low power. It also emphasizes the trade-off techniques for two-level and multi-level logic circuits that involve power dissipation and circuit speed, in the hope that the readers can better understand the issues and ways of achieving their power dissipation goal while meeting the timing constraints. Logic Synthesis for Low Power VLSI Designs is written for VLSI design engineers, CAD professionals, and students who have had a basic knowledge of CMOS digital design and logic synthesis.
Low-Power Design and Power-Aware Verification
Author: Progyna Khondkar
Publisher: Springer
ISBN: 3319666193
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
Until now, there has been a lack of a complete knowledge base to fully comprehend Low power (LP) design and power aware (PA) verification techniques and methodologies and deploy them all together in a real design verification and implementation project. This book is a first approach to establishing a comprehensive PA knowledge base. LP design, PA verification, and Unified Power Format (UPF) or IEEE-1801 power format standards are no longer special features. These technologies and methodologies are now part of industry-standard design, verification, and implementation flows (DVIF). Almost every chip design today incorporates some kind of low power technique either through power management on chip, by dividing the design into different voltage areas and controlling the voltages, through PA dynamic and PA static verification, or their combination. The entire LP design and PA verification process involves thousands of techniques, tools, and methodologies, employed from the r egister transfer level (RTL) of design abstraction down to the synthesis or place-and-route levels of physical design. These techniques, tools, and methodologies are evolving everyday through the progression of design-verification complexity and more intelligent ways of handling that complexity by engineers, researchers, and corporate engineering policy makers.
Publisher: Springer
ISBN: 3319666193
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
Until now, there has been a lack of a complete knowledge base to fully comprehend Low power (LP) design and power aware (PA) verification techniques and methodologies and deploy them all together in a real design verification and implementation project. This book is a first approach to establishing a comprehensive PA knowledge base. LP design, PA verification, and Unified Power Format (UPF) or IEEE-1801 power format standards are no longer special features. These technologies and methodologies are now part of industry-standard design, verification, and implementation flows (DVIF). Almost every chip design today incorporates some kind of low power technique either through power management on chip, by dividing the design into different voltage areas and controlling the voltages, through PA dynamic and PA static verification, or their combination. The entire LP design and PA verification process involves thousands of techniques, tools, and methodologies, employed from the r egister transfer level (RTL) of design abstraction down to the synthesis or place-and-route levels of physical design. These techniques, tools, and methodologies are evolving everyday through the progression of design-verification complexity and more intelligent ways of handling that complexity by engineers, researchers, and corporate engineering policy makers.