An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling PDF Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling PDF Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Stochastic Modelling of Social Processes

Stochastic Modelling of Social Processes PDF Author: Andreas Diekmann
Publisher: Academic Press
ISBN: 1483266567
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Stochastic Modelling of Social Processes provides information pertinent to the development in the field of stochastic modeling and its applications in the social sciences. This book demonstrates that stochastic models can fulfill the goals of explanation and prediction. Organized into nine chapters, this book begins with an overview of stochastic models that fulfill normative, predictive, and structural–analytic roles with the aid of the theory of probability. This text then examines the study of labor market structures using analysis of job and career mobility, which is one of the approaches taken by sociologists in research on the labor market. Other chapters consider the characteristic trends and patterns from data on divorces. This book discusses as well the two approaches of stochastic modeling of social processes, namely competing risk models and semi-Markov processes. The final chapter deals with the practical application of regression models of survival data. This book is a valuable resource for social scientists and statisticians.

Practical Applications of Stochastic Modelling

Practical Applications of Stochastic Modelling PDF Author: Matthew Forshaw
Publisher: Springer Nature
ISBN: 3031440536
Category : Mathematics
Languages : en
Pages : 140

Get Book Here

Book Description
This book constitutes the referred proceedings of the 11th International Workshop on Practical Applications of Stochastic Modelling, PASM 2022, was held in Alicante, Spain, in September 2022. The 7 full papers presented in this volume were carefully reviewed and selected from 9 submissions. The papers demonstrate a diverse set of applications and approaches of stochastic modelling.

Stochastic Modeling

Stochastic Modeling PDF Author: Barry L. Nelson
Publisher: Courier Corporation
ISBN: 0486139948
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.

Stochastic Simulation and Applications in Finance with MATLAB Programs

Stochastic Simulation and Applications in Finance with MATLAB Programs PDF Author: Huu Tue Huynh
Publisher: John Wiley & Sons
ISBN: 0470722134
Category : Business & Economics
Languages : en
Pages : 354

Get Book Here

Book Description
Stochastic Simulation and Applications in Finance with MATLAB Programs explains the fundamentals of Monte Carlo simulation techniques, their use in the numerical resolution of stochastic differential equations and their current applications in finance. Building on an integrated approach, it provides a pedagogical treatment of the need-to-know materials in risk management and financial engineering. The book takes readers through the basic concepts, covering the most recent research and problems in the area, including: the quadratic re-sampling technique, the Least Squared Method, the dynamic programming and Stratified State Aggregation technique to price American options, the extreme value simulation technique to price exotic options and the retrieval of volatility method to estimate Greeks. The authors also present modern term structure of interest rate models and pricing swaptions with the BGM market model, and give a full explanation of corporate securities valuation and credit risk based on the structural approach of Merton. Case studies on financial guarantees illustrate how to implement the simulation techniques in pricing and hedging. NOTE TO READER: The CD has been converted to URL. Go to the following website www.wiley.com/go/huyhnstochastic which provides MATLAB programs for the practical examples and case studies, which will give the reader confidence in using and adapting specific ways to solve problems involving stochastic processes in finance.

Stochastic Modeling

Stochastic Modeling PDF Author:
Publisher:
ISBN: 9780981396811
Category : Actuarial science
Languages : en
Pages :

Get Book Here

Book Description


Constructive Computation in Stochastic Models with Applications

Constructive Computation in Stochastic Models with Applications PDF Author: Quan-Lin Li
Publisher: Springer Science & Business Media
ISBN: 364211492X
Category : Mathematics
Languages : en
Pages : 693

Get Book Here

Book Description
"Constructive Computation in Stochastic Models with Applications: The RG-Factorizations" provides a unified, constructive and algorithmic framework for numerical computation of many practical stochastic systems. It summarizes recent important advances in computational study of stochastic models from several crucial directions, such as stationary computation, transient solution, asymptotic analysis, reward processes, decision processes, sensitivity analysis as well as game theory. Graduate students, researchers and practicing engineers in the field of operations research, management sciences, applied probability, computer networks, manufacturing systems, transportation systems, insurance and finance, risk management and biological sciences will find this book valuable. Dr. Quan-Lin Li is an Associate Professor at the Department of Industrial Engineering of Tsinghua University, China.

Stochastic Calculus and Financial Applications

Stochastic Calculus and Financial Applications PDF Author: J. Michael Steele
Publisher: Springer Science & Business Media
ISBN: 1468493051
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH

On the Use of Stochastic Processes in Modeling Reliability Problems

On the Use of Stochastic Processes in Modeling Reliability Problems PDF Author: Alessandro Birolini
Publisher: Springer Science & Business Media
ISBN: 3642465536
Category : Business & Economics
Languages : en
Pages : 113

Get Book Here

Book Description
Stochastic processes are powerful tools for the investigation of reliability and availability of repairable equipment and systems. Because of the involved models, and in order to be mathematically tractable, these processes are generally confined to the class of regenerative stochastic processes with a finite state space, to which belong: renewal processes, Markov processes, semi-Markov processes, and more general regenerative processes with only one (or a few) regeneration staters). The object of this monograph is to review these processes and to use them in solving some reliability problems encountered in practical applications. Emphasis is given to a comprehensive exposition of the analytical procedures, to the limitations in volved, and to the unification and extension of. the models known in the literature. The models investigated here assume. that systems have only one repair crew and that no further failure can occur at system down. Repair and failure rates are general ized step-by-step, up to the case in which the involved process is regenerative with only one (or a few) regeneration state(s). Investigations deal with different kinds of reliabilities and availabilities for series/parallel structures. Preventive main tenance and imperfect switching are considered in some examples.

Stochastic Simulation and Monte Carlo Methods

Stochastic Simulation and Monte Carlo Methods PDF Author: Carl Graham
Publisher: Springer Science & Business Media
ISBN: 3642393632
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.