Author: Juan A. Gallego-Juarez
Publisher: Woodhead Publishing
ISBN: 0323851444
Category : Technology & Engineering
Languages : en
Pages : 948
Book Description
Power Ultrasonics: Applications of High-Intensity Ultrasound, Second Edition provides a comprehensive reference on the fundamentals, processing, engineering, medical, food and pharmaceutical applications of ultrasonic processing. Chapters cover the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids, discuss the materials and designs of power ultrasonic transducers and devices, identify applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology, and cover developments in ultrasound therapy and surgery applications.The new edition also includes recent advances in modeling, characterization and measurement techniques, along with additive manufacturing and micromanufacturing. This is an invaluable reference for graduate students and researchers working in the disciplines of materials science and engineering. In addition, those working on the physics of acoustics, sound and ultrasound, sonochemistry, acoustic engineering and industrial process technology, R&D managers, production, and biomedical engineers will find it useful to their work. - Covers the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids - Discusses the materials and designs of power ultrasonic transducers and devices - Considers state-of-the-art power sonic applications across a wide range of industries
Power Ultrasonics
Author: Juan A. Gallego-Juarez
Publisher: Woodhead Publishing
ISBN: 0323851444
Category : Technology & Engineering
Languages : en
Pages : 948
Book Description
Power Ultrasonics: Applications of High-Intensity Ultrasound, Second Edition provides a comprehensive reference on the fundamentals, processing, engineering, medical, food and pharmaceutical applications of ultrasonic processing. Chapters cover the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids, discuss the materials and designs of power ultrasonic transducers and devices, identify applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology, and cover developments in ultrasound therapy and surgery applications.The new edition also includes recent advances in modeling, characterization and measurement techniques, along with additive manufacturing and micromanufacturing. This is an invaluable reference for graduate students and researchers working in the disciplines of materials science and engineering. In addition, those working on the physics of acoustics, sound and ultrasound, sonochemistry, acoustic engineering and industrial process technology, R&D managers, production, and biomedical engineers will find it useful to their work. - Covers the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids - Discusses the materials and designs of power ultrasonic transducers and devices - Considers state-of-the-art power sonic applications across a wide range of industries
Publisher: Woodhead Publishing
ISBN: 0323851444
Category : Technology & Engineering
Languages : en
Pages : 948
Book Description
Power Ultrasonics: Applications of High-Intensity Ultrasound, Second Edition provides a comprehensive reference on the fundamentals, processing, engineering, medical, food and pharmaceutical applications of ultrasonic processing. Chapters cover the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids, discuss the materials and designs of power ultrasonic transducers and devices, identify applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology, and cover developments in ultrasound therapy and surgery applications.The new edition also includes recent advances in modeling, characterization and measurement techniques, along with additive manufacturing and micromanufacturing. This is an invaluable reference for graduate students and researchers working in the disciplines of materials science and engineering. In addition, those working on the physics of acoustics, sound and ultrasound, sonochemistry, acoustic engineering and industrial process technology, R&D managers, production, and biomedical engineers will find it useful to their work. - Covers the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids - Discusses the materials and designs of power ultrasonic transducers and devices - Considers state-of-the-art power sonic applications across a wide range of industries
Power Ultrasonics
Author: Juan A. Gallego-Juarez
Publisher: Elsevier
ISBN: 0128202548
Category : Science
Languages : en
Pages : 946
Book Description
Power Ultrasonics: Applications of High-Intensity Ultrasound, Second Edition provides a comprehensive reference on the fundamentals, processing, engineering, medical, food and pharmaceutical applications of ultrasonic processing. Chapters cover the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids, discuss the materials and designs of power ultrasonic transducers and devices, identify applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology, and cover developments in ultrasound therapy and surgery applications. The new edition also includes recent advances in modeling, characterization and measurement techniques, along with additive manufacturing and micromanufacturing. This is an invaluable reference for graduate students and researchers working in the disciplines of materials science and engineering. In addition, those working on the physics of acoustics, sound and ultrasound, sonochemistry, acoustic engineering and industrial process technology, R&D managers, production, and biomedical engineers will find it useful to their work. Covers the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids Discusses the materials and designs of power ultrasonic transducers and devices Considers state-of-the-art power sonic applications across a wide range of industries
Publisher: Elsevier
ISBN: 0128202548
Category : Science
Languages : en
Pages : 946
Book Description
Power Ultrasonics: Applications of High-Intensity Ultrasound, Second Edition provides a comprehensive reference on the fundamentals, processing, engineering, medical, food and pharmaceutical applications of ultrasonic processing. Chapters cover the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids, discuss the materials and designs of power ultrasonic transducers and devices, identify applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology, and cover developments in ultrasound therapy and surgery applications. The new edition also includes recent advances in modeling, characterization and measurement techniques, along with additive manufacturing and micromanufacturing. This is an invaluable reference for graduate students and researchers working in the disciplines of materials science and engineering. In addition, those working on the physics of acoustics, sound and ultrasound, sonochemistry, acoustic engineering and industrial process technology, R&D managers, production, and biomedical engineers will find it useful to their work. Covers the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids Discusses the materials and designs of power ultrasonic transducers and devices Considers state-of-the-art power sonic applications across a wide range of industries
Ultrasonics
Author: Dale Ensminger
Publisher: CRC Press
ISBN: 0824758897
Category : Science
Languages : en
Pages : 768
Book Description
Recent advances in power electronics greatly benefit the multidisciplinary field of modern ultrasonics. More powerful, compact, and versatile electronic chips and software enable new computer-based devices for real-time data capture, storage, analysis, and display and advance the science and technology employed in commercial systems and applications of ultrasound. Reviewing the scientific basis behind these improvements, Ultrasonics: Fundamentals, Technologies, and Applications, Third Edition discusses them in detail, with new and additional figures and references, offering a completely revised and expanded examination of the state of modern ultrasonics. This new edition of a bestselling industry reference discusses the full breadth of ultrasonics applications for industrial and medical use and provides the fundamentals and insights gathered over the authors’ collective 80 years in the field. It provides a unique and comprehensive treatment of the science and technology behind the latest advancements and applications in both low and high power implementations. Coverage combines fundamental physics, a review and analysis of sensors and transducers, and the systems required for the full spectrum of industrial, nondestructive testing and medical and biomedical uses. It includes citations of numerous references and covers both main stream and the more unusual and obscure applications of ultrasound. Ultrasonics is ubiquitous in its industrial applications for sensing, NDT, and process measurements, in high power forms for processing and sonochemistry, as well as in medical procedures where it is used for diagnosis, therapy and surgery. This book provides a complete overview of the field, presenting numerous applications, cutting-edge advancements and improvements, additional figures and references, and a look at future directions.
Publisher: CRC Press
ISBN: 0824758897
Category : Science
Languages : en
Pages : 768
Book Description
Recent advances in power electronics greatly benefit the multidisciplinary field of modern ultrasonics. More powerful, compact, and versatile electronic chips and software enable new computer-based devices for real-time data capture, storage, analysis, and display and advance the science and technology employed in commercial systems and applications of ultrasound. Reviewing the scientific basis behind these improvements, Ultrasonics: Fundamentals, Technologies, and Applications, Third Edition discusses them in detail, with new and additional figures and references, offering a completely revised and expanded examination of the state of modern ultrasonics. This new edition of a bestselling industry reference discusses the full breadth of ultrasonics applications for industrial and medical use and provides the fundamentals and insights gathered over the authors’ collective 80 years in the field. It provides a unique and comprehensive treatment of the science and technology behind the latest advancements and applications in both low and high power implementations. Coverage combines fundamental physics, a review and analysis of sensors and transducers, and the systems required for the full spectrum of industrial, nondestructive testing and medical and biomedical uses. It includes citations of numerous references and covers both main stream and the more unusual and obscure applications of ultrasound. Ultrasonics is ubiquitous in its industrial applications for sensing, NDT, and process measurements, in high power forms for processing and sonochemistry, as well as in medical procedures where it is used for diagnosis, therapy and surgery. This book provides a complete overview of the field, presenting numerous applications, cutting-edge advancements and improvements, additional figures and references, and a look at future directions.
Ultrasonics
Author: Dale Ensminger
Publisher: CRC Press
ISBN: 1000994953
Category : Science
Languages : en
Pages : 904
Book Description
Updated, revised, and restructured to reflect the latest advances in science and applications, the fourth edition of this best-selling industry and research reference covers the fundamental physical acoustics of ultrasonics and transducers, with a focus on piezoelectric and magnetostrictive modalities. It then discusses the full breadth of ultrasonics applications involving low power (sensing) and high power (processing) for research, industrial, and medical use. This book includes new content covering computer modeling used for acoustic and elastic wave phenomena, including scattering, mode conversion, transmission through layered media, Rayleigh and Lamb waves and flexural plates, modern horn design tools, Langevin transducers, and material characterization. There is more attention on process monitoring and advanced nondestructive testing and evaluation (NDT/NDE), including phased array ultrasound (PAUT), long-range inspection, using guided ultrasonic waves (GUW), internally rotary inspection systems (IRIS), time-of-flight diffraction (TOFD), and acoustic emission (AE). These methods are discussed and applied to both metals and nonmetals using illustrations in various industries, including now additionally for food and beverage products. The topics of defect sizing, capabilities, and limitations, including the probability of detection (POD), are introduced. Three chapters provide a new treatment of high-power ultrasonics, for both fluids and solids, and again, with examples of industrial engineering, food and beverage, pharmaceuticals, petrochemicals, and other process applications. Expanded coverage is given to medical and biological applications, covering diagnostics, therapy, and, at the highest powers, surgery. Key Features Provides an overview of fundamental analysis and transducer technologies needed to design and develop both measurement and processing systems Considers applications in material characterization and metrology Covers ultrasonic nondestructive testing and evaluation and high-power ultrasonics, which involves interactions that change the state of material Highlights medical and biomedical applications of ultrasound, focusing on the physical acoustics and the technology employed for diagnosis, therapy, surgery, and research This book is intended for both the undergraduate and graduate scientists and engineers, as well as the working professional, who seeks to understand the fundamentals together with a holistic treatment of the field of ultrasonics and its diversity of applications.
Publisher: CRC Press
ISBN: 1000994953
Category : Science
Languages : en
Pages : 904
Book Description
Updated, revised, and restructured to reflect the latest advances in science and applications, the fourth edition of this best-selling industry and research reference covers the fundamental physical acoustics of ultrasonics and transducers, with a focus on piezoelectric and magnetostrictive modalities. It then discusses the full breadth of ultrasonics applications involving low power (sensing) and high power (processing) for research, industrial, and medical use. This book includes new content covering computer modeling used for acoustic and elastic wave phenomena, including scattering, mode conversion, transmission through layered media, Rayleigh and Lamb waves and flexural plates, modern horn design tools, Langevin transducers, and material characterization. There is more attention on process monitoring and advanced nondestructive testing and evaluation (NDT/NDE), including phased array ultrasound (PAUT), long-range inspection, using guided ultrasonic waves (GUW), internally rotary inspection systems (IRIS), time-of-flight diffraction (TOFD), and acoustic emission (AE). These methods are discussed and applied to both metals and nonmetals using illustrations in various industries, including now additionally for food and beverage products. The topics of defect sizing, capabilities, and limitations, including the probability of detection (POD), are introduced. Three chapters provide a new treatment of high-power ultrasonics, for both fluids and solids, and again, with examples of industrial engineering, food and beverage, pharmaceuticals, petrochemicals, and other process applications. Expanded coverage is given to medical and biological applications, covering diagnostics, therapy, and, at the highest powers, surgery. Key Features Provides an overview of fundamental analysis and transducer technologies needed to design and develop both measurement and processing systems Considers applications in material characterization and metrology Covers ultrasonic nondestructive testing and evaluation and high-power ultrasonics, which involves interactions that change the state of material Highlights medical and biomedical applications of ultrasound, focusing on the physical acoustics and the technology employed for diagnosis, therapy, surgery, and research This book is intended for both the undergraduate and graduate scientists and engineers, as well as the working professional, who seeks to understand the fundamentals together with a holistic treatment of the field of ultrasonics and its diversity of applications.
Power Transducers for Sonics and Ultrasonics
Author: Bernard F. Hamonic
Publisher: Springer Science & Business Media
ISBN: 3642762719
Category : Science
Languages : en
Pages : 285
Book Description
The up-to-date review articles in this book on modern developments in the field of sonic and ultra sonic power transducers present various aspects, applications, and possible future developments that are of interest to engineers and researchers.
Publisher: Springer Science & Business Media
ISBN: 3642762719
Category : Science
Languages : en
Pages : 285
Book Description
The up-to-date review articles in this book on modern developments in the field of sonic and ultra sonic power transducers present various aspects, applications, and possible future developments that are of interest to engineers and researchers.
Ultrasonics International 91
Author: Sam Stuart
Publisher: Elsevier
ISBN: 1483140830
Category : Science
Languages : en
Pages : 697
Book Description
Ultrasonics International 91 is a documentation of conference proceedings that discusses the status and future of acoustic microscopy and its application to materials research, especially focusing on its quantitative analyses. Acoustic microscopy, using focused waves, has been receiving increased attention as a technology applicable to materials characterization at the microscopic scale. In acoustic microscopy, the excitation and propagation of leaky surface acoustic waves (LSAWs) in the environment of the coupling liquid at the solid specimens are observed. Three types of the systems have been developed: point-focus-beam (PFB), line-focus-beam (LFB), and directional PFB acoustic microscopes. In this paper, a brief history of the practical developments is first presented, followed by LFB acoustic microscopy for quantitative material characterization and some applications concerned with characterization of elastic anisotropy and inhomogeneity of electronic materials, such as LiNb03 and LiTa03 single crystals, and thin-film characterization. This book gives a comprehensive account of the majority of the oral and poster contributions made during the conference, and makes a valuable addition to a student or researchers' ultrasonic literature.
Publisher: Elsevier
ISBN: 1483140830
Category : Science
Languages : en
Pages : 697
Book Description
Ultrasonics International 91 is a documentation of conference proceedings that discusses the status and future of acoustic microscopy and its application to materials research, especially focusing on its quantitative analyses. Acoustic microscopy, using focused waves, has been receiving increased attention as a technology applicable to materials characterization at the microscopic scale. In acoustic microscopy, the excitation and propagation of leaky surface acoustic waves (LSAWs) in the environment of the coupling liquid at the solid specimens are observed. Three types of the systems have been developed: point-focus-beam (PFB), line-focus-beam (LFB), and directional PFB acoustic microscopes. In this paper, a brief history of the practical developments is first presented, followed by LFB acoustic microscopy for quantitative material characterization and some applications concerned with characterization of elastic anisotropy and inhomogeneity of electronic materials, such as LiNb03 and LiTa03 single crystals, and thin-film characterization. This book gives a comprehensive account of the majority of the oral and poster contributions made during the conference, and makes a valuable addition to a student or researchers' ultrasonic literature.
Advances in Adaptive Ultrasonics
Author: Andrew Feeney
Publisher: CRC Press
ISBN: 1040268250
Category : Technology & Engineering
Languages : en
Pages : 209
Book Description
Providing an overview of a new generation of ultrasonic technology, Advances in Adaptive Ultrasonics explores how ultrasonic devices can harness the properties of advanced materials, including shape memory alloys and metamaterials. The applications of ultrasonic devices range from surgery, drilling, and welding to sonar and energy harvesting. This book demonstrates how engineers can overcome common issues within the field of ultrasonics, such as precision control and choice of materials. Beginning with an overview of ultrasonic technology as it is currently understood, the book goes on to discuss the newest iteration in the form of adaptive ultrasonics and the benefits this can offer to multiple industries. Key topics include advanced materials, notably phase-transforming shape memory alloys, and the principles of adaptive ultrasonic transducer design. The book also covers measurement approaches for characterising adaptive ultrasonic devices and provides an overview of potential applications for the technology. This book will be of interest to students and engineers in the field of ultrasonic surgery, industrial engineering, welding, and mechanical materials.
Publisher: CRC Press
ISBN: 1040268250
Category : Technology & Engineering
Languages : en
Pages : 209
Book Description
Providing an overview of a new generation of ultrasonic technology, Advances in Adaptive Ultrasonics explores how ultrasonic devices can harness the properties of advanced materials, including shape memory alloys and metamaterials. The applications of ultrasonic devices range from surgery, drilling, and welding to sonar and energy harvesting. This book demonstrates how engineers can overcome common issues within the field of ultrasonics, such as precision control and choice of materials. Beginning with an overview of ultrasonic technology as it is currently understood, the book goes on to discuss the newest iteration in the form of adaptive ultrasonics and the benefits this can offer to multiple industries. Key topics include advanced materials, notably phase-transforming shape memory alloys, and the principles of adaptive ultrasonic transducer design. The book also covers measurement approaches for characterising adaptive ultrasonic devices and provides an overview of potential applications for the technology. This book will be of interest to students and engineers in the field of ultrasonic surgery, industrial engineering, welding, and mechanical materials.
Fundamentals and Applications of Ultrasonic Waves
Author: J. David N. Cheeke
Publisher: CRC Press
ISBN: 1351833197
Category : Science
Languages : en
Pages : 507
Book Description
Written at an intermediate level in a way that is easy to understand, Fundamentals and Applications of Ultrasonic Waves, Second Edition provides an up-to-date exposition of ultrasonics and some of its main applications. Designed specifically for newcomers to the field, this fully updated second edition emphasizes underlying physical concepts over mathematics. The first half covers the fundamentals of ultrasonic waves for isotropic media. Starting with bulk liquid and solid media, discussion extends to surface and plate effects, at which point the author introduces new modes such as Rayleigh and Lamb waves. This focus on only isotropic media simplifies the usually complex mathematics involved, enabling a clearer understanding of the underlying physics to avoid the complicated tensorial description characteristic of crystalline media. The second part of the book addresses a broad spectrum of industrial and research applications, including quartz crystal resonators, surface acoustic wave devices, MEMS and microacoustics, and acoustic sensors. It also provides a broad discussion on the use of ultrasonics for non-destructive evaluation. The author concentrates on the developing area of microacoustics, including exciting new work on the use of probe microscopy techniques in nanotechnology. Focusing on the physics of acoustic waves, as well as their propagation, technology, and applications, this book addresses viscoelasticity, as well as new concepts in acoustic microscopy. It updates coverage of ultrasonics in nature and developments in sonoluminescence, and it also compares new technologies, including use of atomic force acoustic microscopy and lasers. Highlighting both direct and indirect applications for readers working in neighboring disciplines, the author presents particularly important sections on the use of microacoustics and acoustic nanoprobes in next-generation devices and instruments.
Publisher: CRC Press
ISBN: 1351833197
Category : Science
Languages : en
Pages : 507
Book Description
Written at an intermediate level in a way that is easy to understand, Fundamentals and Applications of Ultrasonic Waves, Second Edition provides an up-to-date exposition of ultrasonics and some of its main applications. Designed specifically for newcomers to the field, this fully updated second edition emphasizes underlying physical concepts over mathematics. The first half covers the fundamentals of ultrasonic waves for isotropic media. Starting with bulk liquid and solid media, discussion extends to surface and plate effects, at which point the author introduces new modes such as Rayleigh and Lamb waves. This focus on only isotropic media simplifies the usually complex mathematics involved, enabling a clearer understanding of the underlying physics to avoid the complicated tensorial description characteristic of crystalline media. The second part of the book addresses a broad spectrum of industrial and research applications, including quartz crystal resonators, surface acoustic wave devices, MEMS and microacoustics, and acoustic sensors. It also provides a broad discussion on the use of ultrasonics for non-destructive evaluation. The author concentrates on the developing area of microacoustics, including exciting new work on the use of probe microscopy techniques in nanotechnology. Focusing on the physics of acoustic waves, as well as their propagation, technology, and applications, this book addresses viscoelasticity, as well as new concepts in acoustic microscopy. It updates coverage of ultrasonics in nature and developments in sonoluminescence, and it also compares new technologies, including use of atomic force acoustic microscopy and lasers. Highlighting both direct and indirect applications for readers working in neighboring disciplines, the author presents particularly important sections on the use of microacoustics and acoustic nanoprobes in next-generation devices and instruments.
Ultrasonic Transducers
Author: K Nakamura
Publisher: Elsevier
ISBN: 0857096303
Category : Technology & Engineering
Languages : en
Pages : 749
Book Description
Ultrasonic transducers are key components in sensors for distance, flow and level measurement as well as in power, biomedical and other applications of ultrasound. Ultrasonic transducers reviews recent research in the design and application of this important technology.Part one provides an overview of materials and design of ultrasonic transducers. Piezoelectricity and basic configurations are explored in depth, along with electromagnetic acoustic transducers, and the use of ceramics, thin film and single crystals in ultrasonic transducers. Part two goes on to investigate modelling and characterisation, with performance modelling, electrical evaluation, laser Doppler vibrometry and optical visualisation all considered in detail. Applications of ultrasonic transducers are the focus of part three, beginning with a review of surface acoustic wave devices and air-borne ultrasound transducers, and going on to consider ultrasonic transducers for use at high temperature and in flaw detection systems, power, biomedical and micro-scale ultrasonics, therapeutic ultrasound devices, piezoelectric and fibre optic hydrophones, and ultrasonic motors are also described.With its distinguished editor and expert team of international contributors,Ultrasonic transducers is an authoritative review of key developments for engineers and materials scientists involved in this area of technology as well as in its applications in sectors as diverse as electronics, wireless communication and medical diagnostics. - Reviews recent research in the design and application of ultrasonic transducers - Provides an overview of the materials and design of ultrasonic transducers, with an in-depth exploration of piezoelectricity and basic configurations - Investigates modelling and characterisation, applications of ultrasonic transducers, and ultrasonic transducers for use at high temperature and in flaw detection systems
Publisher: Elsevier
ISBN: 0857096303
Category : Technology & Engineering
Languages : en
Pages : 749
Book Description
Ultrasonic transducers are key components in sensors for distance, flow and level measurement as well as in power, biomedical and other applications of ultrasound. Ultrasonic transducers reviews recent research in the design and application of this important technology.Part one provides an overview of materials and design of ultrasonic transducers. Piezoelectricity and basic configurations are explored in depth, along with electromagnetic acoustic transducers, and the use of ceramics, thin film and single crystals in ultrasonic transducers. Part two goes on to investigate modelling and characterisation, with performance modelling, electrical evaluation, laser Doppler vibrometry and optical visualisation all considered in detail. Applications of ultrasonic transducers are the focus of part three, beginning with a review of surface acoustic wave devices and air-borne ultrasound transducers, and going on to consider ultrasonic transducers for use at high temperature and in flaw detection systems, power, biomedical and micro-scale ultrasonics, therapeutic ultrasound devices, piezoelectric and fibre optic hydrophones, and ultrasonic motors are also described.With its distinguished editor and expert team of international contributors,Ultrasonic transducers is an authoritative review of key developments for engineers and materials scientists involved in this area of technology as well as in its applications in sectors as diverse as electronics, wireless communication and medical diagnostics. - Reviews recent research in the design and application of ultrasonic transducers - Provides an overview of the materials and design of ultrasonic transducers, with an in-depth exploration of piezoelectricity and basic configurations - Investigates modelling and characterisation, applications of ultrasonic transducers, and ultrasonic transducers for use at high temperature and in flaw detection systems
Ultrasound in Food Processing
Author: Mar Villamiel
Publisher: John Wiley & Sons
ISBN: 1118964179
Category : Technology & Engineering
Languages : en
Pages : 549
Book Description
Part I: Fundamentals of ultrasound This part will cover the main basic principles of ultrasound generation and propagation and those phenomena related to low and high intensity ultrasound applications. The mechanisms involved in food analysis and process monitoring and in food process intensification will be shown. Part II: Low intensity ultrasound applications Low intensity ultrasound applications have been used for non-destructive food analysis as well as for process monitoring. Ultrasonic techniques, based on velocity, attenuation or frequency spectrum analysis, may be considered as rapid, simple, portable and suitable for on-line measurements. Although industrial applications of low-intensity ultrasound, such as meat carcass evaluation, have been used in the food industry for decades, this section will cover the most novel applications, which could be considered as highly relevant for future application in the food industry. Chapters addressing this issue will be divided into three subsections: (1) food control, (2) process monitoring, (3) new trends. Part III: High intensity ultrasound applications High intensity ultrasound application constitutes a way to intensify many food processes. However, the efficient generation and application of ultrasound is essential to achieving a successful effect. This part of the book will begin with a chapter dealing with the importance of the design of efficient ultrasonic application systems. The medium is essential to achieve efficient transmission, and for that reason the particular challenges of applying ultrasound in different media will be addressed. The next part of this section constitutes an up-to-date vision of the use of high intensity ultrasound in food processes. The chapters will be divided into four sections, according to the medium in which the ultrasound vibration is transmitted from the transducers to the product being treated. Thus, solid, liquid, supercritical and gas media have been used for ultrasound propagation. Previous books addressing ultrasonic applications in food processing have been based on the process itself, so chapters have been divided in mass and heat transport, microbial inactivation, etc. This new book will propose a revolutionary overview of ultrasonic applications based on (in the authors’ opinion) the most relevant factor affecting the efficiency of ultrasound applications: the medium in which ultrasound is propagated. Depending on the medium, ultrasonic phenomena can be completely different, but it also affects the complexity of the ultrasonic generation, propagation and application. In addition, the effect of high intensity ultrasound on major components of food, such as proteins, carbohydrates and lipids will be also covered, since this type of information has not been deeply studied in previous books. Other aspects related to the challenges of food industry to incorporate ultrasound devices will be also considered. This point is also very important since, in the last few years, researchers have made huge efforts to integrate fully automated and efficient ultrasound systems to the food production lines but, in some cases, it was not satisfactory. In this sense, it is necessary to identify and review the main related problems to efficiently produce and transmit ultrasound, scale-up, reduce cost, save energy and guarantee the production of safe, healthy and high added value foods.
Publisher: John Wiley & Sons
ISBN: 1118964179
Category : Technology & Engineering
Languages : en
Pages : 549
Book Description
Part I: Fundamentals of ultrasound This part will cover the main basic principles of ultrasound generation and propagation and those phenomena related to low and high intensity ultrasound applications. The mechanisms involved in food analysis and process monitoring and in food process intensification will be shown. Part II: Low intensity ultrasound applications Low intensity ultrasound applications have been used for non-destructive food analysis as well as for process monitoring. Ultrasonic techniques, based on velocity, attenuation or frequency spectrum analysis, may be considered as rapid, simple, portable and suitable for on-line measurements. Although industrial applications of low-intensity ultrasound, such as meat carcass evaluation, have been used in the food industry for decades, this section will cover the most novel applications, which could be considered as highly relevant for future application in the food industry. Chapters addressing this issue will be divided into three subsections: (1) food control, (2) process monitoring, (3) new trends. Part III: High intensity ultrasound applications High intensity ultrasound application constitutes a way to intensify many food processes. However, the efficient generation and application of ultrasound is essential to achieving a successful effect. This part of the book will begin with a chapter dealing with the importance of the design of efficient ultrasonic application systems. The medium is essential to achieve efficient transmission, and for that reason the particular challenges of applying ultrasound in different media will be addressed. The next part of this section constitutes an up-to-date vision of the use of high intensity ultrasound in food processes. The chapters will be divided into four sections, according to the medium in which the ultrasound vibration is transmitted from the transducers to the product being treated. Thus, solid, liquid, supercritical and gas media have been used for ultrasound propagation. Previous books addressing ultrasonic applications in food processing have been based on the process itself, so chapters have been divided in mass and heat transport, microbial inactivation, etc. This new book will propose a revolutionary overview of ultrasonic applications based on (in the authors’ opinion) the most relevant factor affecting the efficiency of ultrasound applications: the medium in which ultrasound is propagated. Depending on the medium, ultrasonic phenomena can be completely different, but it also affects the complexity of the ultrasonic generation, propagation and application. In addition, the effect of high intensity ultrasound on major components of food, such as proteins, carbohydrates and lipids will be also covered, since this type of information has not been deeply studied in previous books. Other aspects related to the challenges of food industry to incorporate ultrasound devices will be also considered. This point is also very important since, in the last few years, researchers have made huge efforts to integrate fully automated and efficient ultrasound systems to the food production lines but, in some cases, it was not satisfactory. In this sense, it is necessary to identify and review the main related problems to efficiently produce and transmit ultrasound, scale-up, reduce cost, save energy and guarantee the production of safe, healthy and high added value foods.