System on Chip Interfaces for Low Power Design

System on Chip Interfaces for Low Power Design PDF Author: Sanjeeb Mishra
Publisher: Morgan Kaufmann
ISBN: 0128017902
Category : Computers
Languages : en
Pages : 410

Get Book Here

Book Description
System on Chip Interfaces for Low Power Design provides a top-down understanding of interfaces available to SoC developers, not only the underlying protocols and architecture of each, but also how they interact and the tradeoffs involved. The book offers a common context to help understand the variety of available interfaces and make sense of technology from different vendors aligned with multiple standards. With particular emphasis on power as a factor, the authors explain how each interface performs in various usage scenarios and discuss their advantages and disadvantages. Readers learn to make educated decisions on what interfaces to use when designing systems and gain insight for innovating new/custom interfaces for a subsystem and their potential impact. Provides a top-down guide to SoC interfaces for memory, multimedia, sensors, display, and communication Explores the underlying protocols and architecture of each interface with multiple examples Guides through competing standards and explains how different interfaces might interact or interfere with each other Explains challenges in system design, validation, debugging and their impact on development

System on Chip Interfaces for Low Power Design

System on Chip Interfaces for Low Power Design PDF Author: Sanjeeb Mishra
Publisher: Morgan Kaufmann
ISBN: 0128017902
Category : Computers
Languages : en
Pages : 410

Get Book Here

Book Description
System on Chip Interfaces for Low Power Design provides a top-down understanding of interfaces available to SoC developers, not only the underlying protocols and architecture of each, but also how they interact and the tradeoffs involved. The book offers a common context to help understand the variety of available interfaces and make sense of technology from different vendors aligned with multiple standards. With particular emphasis on power as a factor, the authors explain how each interface performs in various usage scenarios and discuss their advantages and disadvantages. Readers learn to make educated decisions on what interfaces to use when designing systems and gain insight for innovating new/custom interfaces for a subsystem and their potential impact. Provides a top-down guide to SoC interfaces for memory, multimedia, sensors, display, and communication Explores the underlying protocols and architecture of each interface with multiple examples Guides through competing standards and explains how different interfaces might interact or interfere with each other Explains challenges in system design, validation, debugging and their impact on development

Power Systems-On-Chip

Power Systems-On-Chip PDF Author: Bruno Allard
Publisher: John Wiley & Sons
ISBN: 1119377684
Category : Science
Languages : en
Pages : 346

Get Book Here

Book Description
The book gathers the major issues involved in the practical design of Power Management solutions in wireless products as Internet-of-things. Presentation is not about state-of-the-art but about appropriation of validated recent technologies by practicing engineers. The book delivers insights on major trade-offs and a presentation of examples as a cookbook. The content is segmented in chapters to make access easier for the lay-person.

Low-Power NoC for High-Performance SoC Design

Low-Power NoC for High-Performance SoC Design PDF Author: Hoi-Jun Yoo
Publisher: CRC Press
ISBN: 1420051733
Category : Technology & Engineering
Languages : en
Pages : 304

Get Book Here

Book Description
Chip Design and Implementation from a Practical Viewpoint Focusing on chip implementation, Low-Power NoC for High-Performance SoC Design provides practical knowledge and real examples of how to use network on chip (NoC) in the design of system on chip (SoC). It discusses many architectural and theoretical studies on NoCs, including design methodology, topology exploration, quality-of-service guarantee, low-power design, and implementation trials. The Steps to Implement NoC The book covers the full spectrum of the subject, from theory to actual chip design using NoC. Employing the Unified Modeling Language (UML) throughout, it presents complicated concepts, such as models of computation and communication–computation partitioning, in a manner accessible to laypeople. The authors provide guidelines on how to simplify complex networking theory to design a working chip. In addition, they explore the novel NoC techniques and implementations of the Basic On-Chip Network (BONE) project. Examples of real-time decisions, circuit-level design, systems, and chips give the material a real-world context. Low-Power NoC and Its Application to SoC Design Emphasizing the application of NoC to SoC design, this book shows how to build the complicated interconnections on SoC while keeping a low power consumption.

Gain-Cell Embedded DRAMs for Low-Power VLSI Systems-on-Chip

Gain-Cell Embedded DRAMs for Low-Power VLSI Systems-on-Chip PDF Author: Pascal Meinerzhagen
Publisher: Springer
ISBN: 3319604023
Category : Technology & Engineering
Languages : en
Pages : 151

Get Book Here

Book Description
This book pioneers the field of gain-cell embedded DRAM (GC-eDRAM) design for low-power VLSI systems-on-chip (SoCs). Novel GC-eDRAMs are specifically designed and optimized for a range of low-power VLSI SoCs, ranging from ultra-low power to power-aware high-performance applications. After a detailed review of prior-art GC-eDRAMs, an analytical retention time distribution model is introduced and validated by silicon measurements, which is key for low-power GC-eDRAM design. The book then investigates supply voltage scaling and near-threshold voltage (NTV) operation of a conventional gain cell (GC), before presenting novel GC circuit and assist techniques for NTV operation, including a 3-transistor full transmission-gate write port, reverse body biasing (RBB), and a replica technique for optimum refresh timing. Next, conventional GC bitcells are evaluated under aggressive technology and voltage scaling (down to the subthreshold domain), before novel bitcells for aggressively scaled CMOS nodes and soft-error tolerance as presented, including a 4-transistor GC with partial internal feedback and a 4-transistor GC with built-in redundancy.

Low Power Methodology Manual

Low Power Methodology Manual PDF Author: David Flynn
Publisher: Springer Science & Business Media
ISBN: 0387718192
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book Here

Book Description
This book provides a practical guide for engineers doing low power System-on-Chip (SoC) designs. It covers various aspects of low power design from architectural issues and design techniques to circuit design of power gating switches. In addition to providing a theoretical basis for these techniques, the book addresses the practical issues of implementing them in today's designs with today's tools.

System-on-Chip

System-on-Chip PDF Author: Bashir M. Al-Hashimi
Publisher: IET
ISBN: 0863415520
Category : Technology & Engineering
Languages : en
Pages : 940

Get Book Here

Book Description
This book highlights both the key achievements of electronic systems design targeting SoC implementation style, and the future challenges presented by the continuing scaling of CMOS technology.

System-on-Chip for Real-Time Applications

System-on-Chip for Real-Time Applications PDF Author: Wael Badawy
Publisher: Springer Science & Business Media
ISBN: 1461503515
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
System-on-Chip for Real-Time Applications will be of interest to engineers, both in industry and academia, working in the area of SoC VLSI design and application. It will also be useful to graduate and undergraduate students in electrical and computer engineering and computer science. A selected set of papers from the 2nd International Workshop on Real-Time Applications were used to form the basis of this book. It is organized into the following chapters: -Introduction; -Design Reuse; -Modeling; -Architecture; -Design Techniques; -Memory; -Circuits; -Low Power; -Interconnect and Technology; -MEMS. System-on-Chip for Real-Time Applications contains many signal processing applications and will be of particular interest to those working in that community.

Power Distribution Networks with On-Chip Decoupling Capacitors

Power Distribution Networks with On-Chip Decoupling Capacitors PDF Author: Mikhail Popovich
Publisher: Springer Science & Business Media
ISBN: 0387716017
Category : Technology & Engineering
Languages : en
Pages : 532

Get Book Here

Book Description
This book provides insight into the behavior and design of power distribution systems for high speed, high complexity integrated circuits. Also presented are criteria for estimating minimum required on-chip decoupling capacitance. Techniques and algorithms for computer-aided design of on-chip power distribution networks are also described; however, the emphasis is on developing circuit intuition and understanding the principles that govern the design and operation of power distribution systems.

Low-Power Processors and Systems on Chips

Low-Power Processors and Systems on Chips PDF Author: Christian Piguet
Publisher: CRC Press
ISBN: 142003720X
Category : Technology & Engineering
Languages : en
Pages : 392

Get Book Here

Book Description
The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, this volume addresses the design of low-power microprocessors in deep submicron technologies. It provides a focused reference for specialists involved in systems-on-chips, from low-power microprocessors to DSP cores, reconfigurable processors, memories, ad-hoc networks, and embedded software. Low-Power Processors and Systems on Chips is organized into three broad sections for convenient access. The first section examines the design of digital signal processors for embedded applications and techniques for reducing dynamic and static power at the electrical and system levels. The second part describes several aspects of low-power systems on chips, including hardware and embedded software aspects, efficient data storage, networks-on-chips, and applications such as routing strategies in wireless RF sensing and actuating devices. The final section discusses embedded software issues, including details on compilers, retargetable compilers, and coverification tools. Providing detailed examinations contributed by leading experts, Low-Power Processors and Systems on Chips supplies authoritative information on how to maintain high performance while lowering power consumption in modern processors and SoCs. It is a must-read for anyone designing modern computers or embedded systems.

Advanced Multicore Systems-On-Chip

Advanced Multicore Systems-On-Chip PDF Author: Abderazek Ben Abdallah
Publisher: Springer
ISBN: 9811060924
Category : Computers
Languages : en
Pages : 292

Get Book Here

Book Description
From basic architecture, interconnection, and parallelization to power optimization, this book provides a comprehensive description of emerging multicore systems-on-chip (MCSoCs) hardware and software design. Highlighting both fundamentals and advanced software and hardware design, it can serve as a primary textbook for advanced courses in MCSoCs design and embedded systems. The first three chapters introduce MCSoCs architectures, present design challenges and conventional design methods, and describe in detail the main building blocks of MCSoCs. Chapters 4, 5, and 6 discuss fundamental and advanced on-chip interconnection network technologies for multi and many core SoCs, enabling readers to understand the microarchitectures for on-chip routers and network interfaces that are essential in the context of latency, area, and power constraints. With the rise of multicore and many-core systems, concurrency is becoming a major issue in the daily life of a programmer. Thus, compiler and software development tools are critical in helping programmers create high-performance software. Programmers should make sure that their parallelized program codes will not cause race condition, memory-access deadlocks, or other faults that may crash their entire systems. As such, Chapter 7 describes a novel parallelizing compiler design for high-performance computing. Chapter 8 provides a detailed investigation of power reduction techniques for MCSoCs at component and network levels. It discusses energy conservation in general hardware design, and also in embedded multicore system components, such as CPUs, disks, displays and memories. Lastly, Chapter 9 presents a real embedded MCSoCs system design targeted for health monitoring in the elderly.