Author: Joe H. Chow
Publisher: Springer Science & Business Media
ISBN: 1461418038
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
"Power System Coherency and Model Reduction" provides a comprehensive treatment for understanding interarea modes in large power systems and obtaining reduced-order models using the coherency concept and selective modal analysis method. Both linear and nonlinear analysis methods are covered. This is a reference book for researchers interested in interarea oscillations and model reduction, and power engineers in developing reduced models for power system studies and control design.
Power System Coherency and Model Reduction
Author: Joe H. Chow
Publisher: Springer Science & Business Media
ISBN: 1461418038
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
"Power System Coherency and Model Reduction" provides a comprehensive treatment for understanding interarea modes in large power systems and obtaining reduced-order models using the coherency concept and selective modal analysis method. Both linear and nonlinear analysis methods are covered. This is a reference book for researchers interested in interarea oscillations and model reduction, and power engineers in developing reduced models for power system studies and control design.
Publisher: Springer Science & Business Media
ISBN: 1461418038
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
"Power System Coherency and Model Reduction" provides a comprehensive treatment for understanding interarea modes in large power systems and obtaining reduced-order models using the coherency concept and selective modal analysis method. Both linear and nonlinear analysis methods are covered. This is a reference book for researchers interested in interarea oscillations and model reduction, and power engineers in developing reduced models for power system studies and control design.
Power System Modeling, Computation, and Control
Author: Joe H. Chow
Publisher: John Wiley & Sons
ISBN: 1119546877
Category : Technology & Engineering
Languages : en
Pages : 664
Book Description
Provides students with an understanding of the modeling and practice in power system stability analysis and control design, as well as the computational tools used by commercial vendors Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis. Power System Modeling, Computation, and Control provides students with a new and detailed analysis of voltage stability; a simple example illustrating the BCU method of transient stability analysis; and one of only a few derivations of the transient synchronous machine model. It offers a discussion on reactive power consumption of induction motors during start-up to illustrate the low-voltage phenomenon observed in urban load centers. Damping controller designs using power system stabilizer, HVDC systems, static var compensator, and thyristor-controlled series compensation are also examined. In addition, there are chapters covering flexible AC transmission Systems (FACTS)—including both thyristor and voltage-sourced converter technology—and wind turbine generation and modeling. Simplifies the learning of complex power system concepts, models, and dynamics Provides chapters on power flow solution, voltage stability, simulation methods, transient stability, small signal stability, synchronous machine models (steady-state and dynamic models), excitation systems, and power system stabilizer design Includes advanced analysis of voltage stability, voltage recovery during motor starts, FACTS and their operation, damping control design using various control equipment, wind turbine models, and control Contains numerous examples, tables, figures of block diagrams, MATLAB plots, and problems involving real systems Written by experienced educators whose previous books and papers are used extensively by the international scientific community Power System Modeling, Computation, and Control is an ideal textbook for graduate students of the subject, as well as for power system engineers and control design professionals.
Publisher: John Wiley & Sons
ISBN: 1119546877
Category : Technology & Engineering
Languages : en
Pages : 664
Book Description
Provides students with an understanding of the modeling and practice in power system stability analysis and control design, as well as the computational tools used by commercial vendors Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis. Power System Modeling, Computation, and Control provides students with a new and detailed analysis of voltage stability; a simple example illustrating the BCU method of transient stability analysis; and one of only a few derivations of the transient synchronous machine model. It offers a discussion on reactive power consumption of induction motors during start-up to illustrate the low-voltage phenomenon observed in urban load centers. Damping controller designs using power system stabilizer, HVDC systems, static var compensator, and thyristor-controlled series compensation are also examined. In addition, there are chapters covering flexible AC transmission Systems (FACTS)—including both thyristor and voltage-sourced converter technology—and wind turbine generation and modeling. Simplifies the learning of complex power system concepts, models, and dynamics Provides chapters on power flow solution, voltage stability, simulation methods, transient stability, small signal stability, synchronous machine models (steady-state and dynamic models), excitation systems, and power system stabilizer design Includes advanced analysis of voltage stability, voltage recovery during motor starts, FACTS and their operation, damping control design using various control equipment, wind turbine models, and control Contains numerous examples, tables, figures of block diagrams, MATLAB plots, and problems involving real systems Written by experienced educators whose previous books and papers are used extensively by the international scientific community Power System Modeling, Computation, and Control is an ideal textbook for graduate students of the subject, as well as for power system engineers and control design professionals.
Power Systems & Power Plant Control
Author: P. Wang
Publisher: Elsevier
ISBN: 1483298221
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
The control of power systems and power plants is a subject of worldwide interest which continues to sustain a high level of research, development and application in many diverse yet complementary areas. Papers pertaining to 13 areas directly related to power systems and representing state-of-the-art methods are included in this volume. The topics covered include linear and nonlinear optimization, static and dynamic state estimation, security analysis, generation control, excitation and voltage control, power plant modelling and control, stability analysis, emergency and restorative controls, large-scale sparse matrix techniques, data communication, microcomputer systems, power system stabilizers, load forecasting, optimum generation scheduling and power system control centers. The compilation of this information in one volume makes it essential reading for a comprehension of the current knowledge in the field of power control.
Publisher: Elsevier
ISBN: 1483298221
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
The control of power systems and power plants is a subject of worldwide interest which continues to sustain a high level of research, development and application in many diverse yet complementary areas. Papers pertaining to 13 areas directly related to power systems and representing state-of-the-art methods are included in this volume. The topics covered include linear and nonlinear optimization, static and dynamic state estimation, security analysis, generation control, excitation and voltage control, power plant modelling and control, stability analysis, emergency and restorative controls, large-scale sparse matrix techniques, data communication, microcomputer systems, power system stabilizers, load forecasting, optimum generation scheduling and power system control centers. The compilation of this information in one volume makes it essential reading for a comprehension of the current knowledge in the field of power control.
Modelling, Control and Stability Analysis of Photovoltaic Systems in Power System Dynamic Studies
Author: Gustav Lammert
Publisher: kassel university press GmbH
ISBN: 3737607168
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
This thesis investigates the impact of: i) the low voltage ride-through and dynamic voltage support capability; ii) the active current recovery rate; iii) the local voltage control; and iv) the plant-level voltage control of large-scale photovoltaic systems on short-term voltage stability and fault-induced delayed voltage recovery as well as transient and frequency stability. The power system dynamic performance is analysed using state-of-the-art methods, such as phasor mode time-domain simulations and the calculation of the critical clearing time that determines the stability margin. Moreover, the recently developed Kullback-Leibler divergence measure is applied to assess the quality of the voltage recovery. Drawbacks of this metric are outlined and a novel metric, the so-called voltage recovery index, is defined that quantifies the delayed voltage recovery more systematically. The studies are performed with a generic photovoltaic system model and typical model parameters are used that were determined in collaboration with a manufacturer. The stability analysis is performed in DIgSILENT PowerFactory using: i) a one-load infinite-bus system; and ii) an IEEE multi-machine voltage stability test system, namely the Nordic test system. The results show that with the adequate control of photovoltaic systems, power system dynamic performance can be significantly improved.
Publisher: kassel university press GmbH
ISBN: 3737607168
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
This thesis investigates the impact of: i) the low voltage ride-through and dynamic voltage support capability; ii) the active current recovery rate; iii) the local voltage control; and iv) the plant-level voltage control of large-scale photovoltaic systems on short-term voltage stability and fault-induced delayed voltage recovery as well as transient and frequency stability. The power system dynamic performance is analysed using state-of-the-art methods, such as phasor mode time-domain simulations and the calculation of the critical clearing time that determines the stability margin. Moreover, the recently developed Kullback-Leibler divergence measure is applied to assess the quality of the voltage recovery. Drawbacks of this metric are outlined and a novel metric, the so-called voltage recovery index, is defined that quantifies the delayed voltage recovery more systematically. The studies are performed with a generic photovoltaic system model and typical model parameters are used that were determined in collaboration with a manufacturer. The stability analysis is performed in DIgSILENT PowerFactory using: i) a one-load infinite-bus system; and ii) an IEEE multi-machine voltage stability test system, namely the Nordic test system. The results show that with the adequate control of photovoltaic systems, power system dynamic performance can be significantly improved.
Graph Theory Applications to Deregulated Power Systems
Author: Ricardo Moreno Chuquen
Publisher: Springer Nature
ISBN: 3030575896
Category : Technology & Engineering
Languages : en
Pages : 62
Book Description
This book provides a detailed description of network science concepts applied to power systems and electricity markets, offering an appropriate blend of theoretical background and practical applications for operation and power system planning. It discusses an approach to understanding power systems from a network science perspective using the direct recognition of the interconnectivity provided by the transmission system. Further, it explores the network properties in detail and characterizes them as a tool for online and offline applications for power system operation. The book includes an in-depth explanation of electricity markets problems that can be addressed from a graph theory perspective. It is intended for advanced undergraduate and graduate students in the fields of electric energy systems, operations research, management science and economics. Practitioners in the electric energy sector also benefit from the concepts and techniques presented here.
Publisher: Springer Nature
ISBN: 3030575896
Category : Technology & Engineering
Languages : en
Pages : 62
Book Description
This book provides a detailed description of network science concepts applied to power systems and electricity markets, offering an appropriate blend of theoretical background and practical applications for operation and power system planning. It discusses an approach to understanding power systems from a network science perspective using the direct recognition of the interconnectivity provided by the transmission system. Further, it explores the network properties in detail and characterizes them as a tool for online and offline applications for power system operation. The book includes an in-depth explanation of electricity markets problems that can be addressed from a graph theory perspective. It is intended for advanced undergraduate and graduate students in the fields of electric energy systems, operations research, management science and economics. Practitioners in the electric energy sector also benefit from the concepts and techniques presented here.
Power System Dynamic Modelling and Analysis in Evolving Networks
Author: Babak Badrzadeh
Publisher: Springer Nature
ISBN: 3031478215
Category : Mathematics
Languages : en
Pages : 893
Book Description
This Green Book is an essential resource for power system engineers seeking comprehensive information on contemporary power system dynamic modelling and analysis. With today's rapid adoption of inverter-based resources and the resulting changes in power system dynamics, this book compares conventional power systems with evolving power systems characterized by high shares of grid-connected and distributed inverter-based resources. It covers dynamic phenomena, analysis methods, simulation tools and enablers required for secure and reliable system planning and operation. Starting with an overview of power system studies and associated analysis tools, the book provides modelling requirements for various power system components, including existing and emerging technologies. It includes practical examples from real-world power systems worldwide that act as step-by-step study guides for practising engineers and provides knowledge to apply in their day-to-day tasks. Additionally, the book emphasizes the importance of power system model acceptance testing and validation, providing practical examples of various testing methods. Written with practising power system engineers in mind, this book minimizes the use of advanced mathematics. However, relevant sources for those interested in learning more about mathematical concepts are provided. Overall, this book is an invaluable resource for power system engineers navigating contemporary power systems. Readers who would like to comment on any of the published books or identify errors to the editorial team please contact: [email protected].
Publisher: Springer Nature
ISBN: 3031478215
Category : Mathematics
Languages : en
Pages : 893
Book Description
This Green Book is an essential resource for power system engineers seeking comprehensive information on contemporary power system dynamic modelling and analysis. With today's rapid adoption of inverter-based resources and the resulting changes in power system dynamics, this book compares conventional power systems with evolving power systems characterized by high shares of grid-connected and distributed inverter-based resources. It covers dynamic phenomena, analysis methods, simulation tools and enablers required for secure and reliable system planning and operation. Starting with an overview of power system studies and associated analysis tools, the book provides modelling requirements for various power system components, including existing and emerging technologies. It includes practical examples from real-world power systems worldwide that act as step-by-step study guides for practising engineers and provides knowledge to apply in their day-to-day tasks. Additionally, the book emphasizes the importance of power system model acceptance testing and validation, providing practical examples of various testing methods. Written with practising power system engineers in mind, this book minimizes the use of advanced mathematics. However, relevant sources for those interested in learning more about mathematical concepts are provided. Overall, this book is an invaluable resource for power system engineers navigating contemporary power systems. Readers who would like to comment on any of the published books or identify errors to the editorial team please contact: [email protected].
Applications
Author: Peter Benner
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110497751
Category : Mathematics
Languages : en
Pages : 465
Book Description
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110497751
Category : Mathematics
Languages : en
Pages : 465
Book Description
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
Hierarchical Power Systems: Optimal Operation Using Grid Flexibilities
Author: Tim Aschenbruck
Publisher: Springer Nature
ISBN: 3031256999
Category : Technology & Engineering
Languages : en
Pages : 60
Book Description
This book explains the power grid as a hierarchy made up of the transmission, distribution, and microgrid levels. Interfaces among these levels are explored to show how flexibility in power demand associated with residential batteries can be communicated through the entire grid to facilitate optimal power flow computations within the transmission grid. To realize this approach, the authors combine semi-definite optimal power flow with model-order reduction at the distribution level and with a new heuristic algorithm for stable power flow at the transmission level. To demonstrate its use, a numerical case study based on modified IEEE 9-bus and 33-bus systems for the transmission and distribution grid, respectively, is included. This book shows how exploiting the flexibility on the residential level improves the performance of the power flow with the transmission grid.
Publisher: Springer Nature
ISBN: 3031256999
Category : Technology & Engineering
Languages : en
Pages : 60
Book Description
This book explains the power grid as a hierarchy made up of the transmission, distribution, and microgrid levels. Interfaces among these levels are explored to show how flexibility in power demand associated with residential batteries can be communicated through the entire grid to facilitate optimal power flow computations within the transmission grid. To realize this approach, the authors combine semi-definite optimal power flow with model-order reduction at the distribution level and with a new heuristic algorithm for stable power flow at the transmission level. To demonstrate its use, a numerical case study based on modified IEEE 9-bus and 33-bus systems for the transmission and distribution grid, respectively, is included. This book shows how exploiting the flexibility on the residential level improves the performance of the power flow with the transmission grid.
New Technologies for Power System Operation and Analysis
Author: Huaiguang Jiang
Publisher: Academic Press
ISBN: 012820169X
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
New Technologies for Power System Operation and Analysis considers the very latest developments in renewable energy integration and system operation, including electricity markets and wide-area monitoring systems and forecasting. Helping readers quickly grasp the essential information needed to address renewable energy integration challenges, this new book looks at basic power system mathematical models, advanced renewable integration and system optimizations from transmission and distribution system sides. Sections cover wind, solar, gas and petroleum, making this a useful reference for all engineers interested in power system operation. - Includes codes in MATLAB® and Python - Provides a complete analysis of all new and relevant power system technologies - Covers the impact on existing power system operations at the advanced level, with detailed technical insights
Publisher: Academic Press
ISBN: 012820169X
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
New Technologies for Power System Operation and Analysis considers the very latest developments in renewable energy integration and system operation, including electricity markets and wide-area monitoring systems and forecasting. Helping readers quickly grasp the essential information needed to address renewable energy integration challenges, this new book looks at basic power system mathematical models, advanced renewable integration and system optimizations from transmission and distribution system sides. Sections cover wind, solar, gas and petroleum, making this a useful reference for all engineers interested in power system operation. - Includes codes in MATLAB® and Python - Provides a complete analysis of all new and relevant power system technologies - Covers the impact on existing power system operations at the advanced level, with detailed technical insights
Smart Grid Handbook, 3 Volume Set
Author:
Publisher: John Wiley & Sons
ISBN: 1118755480
Category : Science
Languages : en
Pages : 1991
Book Description
Comprehensive, cross-disciplinary coverage of Smart Grid issues from global expert researchers and practitioners. This definitive reference meets the need for a large scale, high quality work reference in Smart Grid engineering which is pivotal in the development of a low-carbon energy infrastructure. Including a total of 83 articles across 3 volumes The Smart Grid Handbook is organized in to 6 sections: Vision and Drivers, Transmission, Distribution, Smart Meters and Customers, Information and Communications Technology, and Socio-Economic Issues. Key features: Written by a team representing smart grid R&D, technology deployment, standards, industry practice, and socio-economic aspects. Vision and Drivers covers the vision, definitions, evolution, and global development of the smart grid as well as new technologies and standards. The Transmission section discusses industry practice, operational experience, standards, cyber security, and grid codes. The Distribution section introduces distribution systems and the system configurations in different countries and different load areas served by the grid. The Smart Meters and Customers section assesses how smart meters enable the customers to interact with the power grid. Socio-economic issues and information and communications technology requirements are covered in dedicated articles.The Smart Grid Handbook will meet the need for a high quality reference work to support advanced study and research in the field of electrical power generation, transmission and distribution. It will be an essential reference for regulators and government officials, testing laboratories and certification organizations, and engineers and researchers in Smart Grid-related industries.
Publisher: John Wiley & Sons
ISBN: 1118755480
Category : Science
Languages : en
Pages : 1991
Book Description
Comprehensive, cross-disciplinary coverage of Smart Grid issues from global expert researchers and practitioners. This definitive reference meets the need for a large scale, high quality work reference in Smart Grid engineering which is pivotal in the development of a low-carbon energy infrastructure. Including a total of 83 articles across 3 volumes The Smart Grid Handbook is organized in to 6 sections: Vision and Drivers, Transmission, Distribution, Smart Meters and Customers, Information and Communications Technology, and Socio-Economic Issues. Key features: Written by a team representing smart grid R&D, technology deployment, standards, industry practice, and socio-economic aspects. Vision and Drivers covers the vision, definitions, evolution, and global development of the smart grid as well as new technologies and standards. The Transmission section discusses industry practice, operational experience, standards, cyber security, and grid codes. The Distribution section introduces distribution systems and the system configurations in different countries and different load areas served by the grid. The Smart Meters and Customers section assesses how smart meters enable the customers to interact with the power grid. Socio-economic issues and information and communications technology requirements are covered in dedicated articles.The Smart Grid Handbook will meet the need for a high quality reference work to support advanced study and research in the field of electrical power generation, transmission and distribution. It will be an essential reference for regulators and government officials, testing laboratories and certification organizations, and engineers and researchers in Smart Grid-related industries.