Author: Vishram S. Pandit
Publisher: Pearson Education
ISBN: 0132596962
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
Foreword by Joungho Kim The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts In this book, three industry experts introduce state-of-the-art power integrity design techniques for today’s most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability. After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB power distribution networks (PDNs) and signal networks, carefully reviewing their interactions. Next, they walk through end-to-end PDN and signal network design in frequency domain, addressing crucial parameters such as self and transfer impedance. They thoroughly address modeling and characterization of on-chip components of PDNs and signal networks, evaluation of power-to-signal coupling coefficients, analysis of Simultaneous Switching Output (SSO) noise, and many other topics. Coverage includes The exponentially growing challenge of I/O power integrity in high-speed digital systems PDN noise analysis and its timing impact for single-ended and differential interfaces Concurrent design and co-simulation techniques for evaluating all power integrity effects on signal integrity Time domain gauges for designing and optimizing components and systems Power/signal integrity interaction mechanisms, including power noise coupling onto signal trace and noise amplification through signal resonance Performance impact due to Inter Symbol Interference (ISI), crosstalk, and SSO noise, as well as their interactions Validation techniques, including low impedance VNA measurements, power noise measurements, and characterization of power-to-signal coupling effects Power Integrity for I/O Interfaces will be an indispensable resource for everyone concerned with power integrity in cutting-edge digital designs, including system design and hardware engineers, signal and power integrity engineers, graduate students, and researchers.
Power Integrity for I/O Interfaces
Author: Vishram S. Pandit
Publisher: Pearson Education
ISBN: 0132596962
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
Foreword by Joungho Kim The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts In this book, three industry experts introduce state-of-the-art power integrity design techniques for today’s most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability. After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB power distribution networks (PDNs) and signal networks, carefully reviewing their interactions. Next, they walk through end-to-end PDN and signal network design in frequency domain, addressing crucial parameters such as self and transfer impedance. They thoroughly address modeling and characterization of on-chip components of PDNs and signal networks, evaluation of power-to-signal coupling coefficients, analysis of Simultaneous Switching Output (SSO) noise, and many other topics. Coverage includes The exponentially growing challenge of I/O power integrity in high-speed digital systems PDN noise analysis and its timing impact for single-ended and differential interfaces Concurrent design and co-simulation techniques for evaluating all power integrity effects on signal integrity Time domain gauges for designing and optimizing components and systems Power/signal integrity interaction mechanisms, including power noise coupling onto signal trace and noise amplification through signal resonance Performance impact due to Inter Symbol Interference (ISI), crosstalk, and SSO noise, as well as their interactions Validation techniques, including low impedance VNA measurements, power noise measurements, and characterization of power-to-signal coupling effects Power Integrity for I/O Interfaces will be an indispensable resource for everyone concerned with power integrity in cutting-edge digital designs, including system design and hardware engineers, signal and power integrity engineers, graduate students, and researchers.
Publisher: Pearson Education
ISBN: 0132596962
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
Foreword by Joungho Kim The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts In this book, three industry experts introduce state-of-the-art power integrity design techniques for today’s most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability. After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB power distribution networks (PDNs) and signal networks, carefully reviewing their interactions. Next, they walk through end-to-end PDN and signal network design in frequency domain, addressing crucial parameters such as self and transfer impedance. They thoroughly address modeling and characterization of on-chip components of PDNs and signal networks, evaluation of power-to-signal coupling coefficients, analysis of Simultaneous Switching Output (SSO) noise, and many other topics. Coverage includes The exponentially growing challenge of I/O power integrity in high-speed digital systems PDN noise analysis and its timing impact for single-ended and differential interfaces Concurrent design and co-simulation techniques for evaluating all power integrity effects on signal integrity Time domain gauges for designing and optimizing components and systems Power/signal integrity interaction mechanisms, including power noise coupling onto signal trace and noise amplification through signal resonance Performance impact due to Inter Symbol Interference (ISI), crosstalk, and SSO noise, as well as their interactions Validation techniques, including low impedance VNA measurements, power noise measurements, and characterization of power-to-signal coupling effects Power Integrity for I/O Interfaces will be an indispensable resource for everyone concerned with power integrity in cutting-edge digital designs, including system design and hardware engineers, signal and power integrity engineers, graduate students, and researchers.
Power Integrity for I/O Interfaces
Author: Vishram Shriram Pandit
Publisher: Pearson Education
ISBN: 9780137011193
Category : Computer interfaces
Languages : en
Pages : 0
Book Description
Foreword by Joungho Kim The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts In this book, three industry experts introduce state-of-the-art power integrity design techniques for today's most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability. After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB power distribution networks (PDNs) and signal networks, carefully reviewing their interactions. Next, they walk through end-to-end PDN and signal network design in frequency domain, addressing crucial parameters such as self and transfer impedance. They thoroughly address modeling and characterization of on-chip components of PDNs and signal networks, evaluation of power-to-signal coupling coefficients, analysis of Simultaneous Switching Output (SSO) noise, and many other topics. Coverage includes * The exponentially growing challenge of I/O power integrity in high-speed digital systems * PDN noise analysis and its timing impact for single-ended and differential interfaces * Concurrent design and co-simulation techniques for evaluating all power integrity effects on signal integrity * Time domain gauges for designing and optimizing components and systems * Power/signal integrity interaction mechanisms, including power noise coupling onto signal trace and noise amplification through signal resonance * Performance impact due to Inter Symbol Interference (ISI), crosstalk, and SSO noise, as well as their interactions * Validation techniques, including low impedance VNA measurements, power noise measurements, and characterization of power-to-signal coupling effects Power Integrity for I/O Interfaces will be an indispensable resource for everyone concerned with power integrity in cutting-edge digital designs, including system design and hardware engineers, signal and power integrity engineers, graduate students, and researchers.
Publisher: Pearson Education
ISBN: 9780137011193
Category : Computer interfaces
Languages : en
Pages : 0
Book Description
Foreword by Joungho Kim The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts In this book, three industry experts introduce state-of-the-art power integrity design techniques for today's most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability. After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB power distribution networks (PDNs) and signal networks, carefully reviewing their interactions. Next, they walk through end-to-end PDN and signal network design in frequency domain, addressing crucial parameters such as self and transfer impedance. They thoroughly address modeling and characterization of on-chip components of PDNs and signal networks, evaluation of power-to-signal coupling coefficients, analysis of Simultaneous Switching Output (SSO) noise, and many other topics. Coverage includes * The exponentially growing challenge of I/O power integrity in high-speed digital systems * PDN noise analysis and its timing impact for single-ended and differential interfaces * Concurrent design and co-simulation techniques for evaluating all power integrity effects on signal integrity * Time domain gauges for designing and optimizing components and systems * Power/signal integrity interaction mechanisms, including power noise coupling onto signal trace and noise amplification through signal resonance * Performance impact due to Inter Symbol Interference (ISI), crosstalk, and SSO noise, as well as their interactions * Validation techniques, including low impedance VNA measurements, power noise measurements, and characterization of power-to-signal coupling effects Power Integrity for I/O Interfaces will be an indispensable resource for everyone concerned with power integrity in cutting-edge digital designs, including system design and hardware engineers, signal and power integrity engineers, graduate students, and researchers.
Power Integrity for I/O Interfaces
Author: Vishram S. Pandit
Publisher:
ISBN: 9780132596947
Category : Computer interfaces
Languages : en
Pages : 0
Book Description
Foreword by Joungho Kim The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts In this book, three industry experts introduce state-of-the-art power integrity design techniques for today's most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability. After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB power distribution networks (PDNs) and signal networks, carefully reviewing their interactions. Next, they walk through end-to-end PDN and signal network design in frequency domain, addressing crucial parameters such as self and transfer impedance. They thoroughly address modeling and characterization of on-chip components of PDNs and signal networks, evaluation of power-to-signal coupling coefficients, analysis of Simultaneous Switching Output (SSO) noise, and many other topics. Coverage includes • The exponentially growing challenge of I/O power integrity in high-speed digital systems • PDN noise analysis and its timing impact for single-ended and differential interfaces • Concurrent design and co-simulation techniques for evaluating all power integrity effects on signal integrity • Time domain gauges for designing and optimizing components and systems • Power/signal integrity interaction mechanisms, including power noise coupling onto signal trace and noise amplification through signal resonance • Performance impact due to Inter Symbol Interference (ISI), crosstalk, and SSO noise, as well as their interactions • Validation techniques, including low impedance VNA measurements, power noise measurements, and characterization of power-to-signal coupling effects Power Integrity for I/O Interfaces will be an indispensable resource for everyone concerned with power integrity in cutting-edge digital designs, including system design and hardware engineers, signal and power integrity engineers, graduate students, and researchers.
Publisher:
ISBN: 9780132596947
Category : Computer interfaces
Languages : en
Pages : 0
Book Description
Foreword by Joungho Kim The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts In this book, three industry experts introduce state-of-the-art power integrity design techniques for today's most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability. After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB power distribution networks (PDNs) and signal networks, carefully reviewing their interactions. Next, they walk through end-to-end PDN and signal network design in frequency domain, addressing crucial parameters such as self and transfer impedance. They thoroughly address modeling and characterization of on-chip components of PDNs and signal networks, evaluation of power-to-signal coupling coefficients, analysis of Simultaneous Switching Output (SSO) noise, and many other topics. Coverage includes • The exponentially growing challenge of I/O power integrity in high-speed digital systems • PDN noise analysis and its timing impact for single-ended and differential interfaces • Concurrent design and co-simulation techniques for evaluating all power integrity effects on signal integrity • Time domain gauges for designing and optimizing components and systems • Power/signal integrity interaction mechanisms, including power noise coupling onto signal trace and noise amplification through signal resonance • Performance impact due to Inter Symbol Interference (ISI), crosstalk, and SSO noise, as well as their interactions • Validation techniques, including low impedance VNA measurements, power noise measurements, and characterization of power-to-signal coupling effects Power Integrity for I/O Interfaces will be an indispensable resource for everyone concerned with power integrity in cutting-edge digital designs, including system design and hardware engineers, signal and power integrity engineers, graduate students, and researchers.
Power Integrity for I/O Interfaces
Author: Vishram S. Pandit
Publisher:
ISBN:
Category :
Languages : en
Pages : 417
Book Description
Foreword by Joungho Kim The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts In this book, three industry experts introduce state-of-the-art power integrity design techniques for today's most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability. After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB p.
Publisher:
ISBN:
Category :
Languages : en
Pages : 417
Book Description
Foreword by Joungho Kim The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts In this book, three industry experts introduce state-of-the-art power integrity design techniques for today's most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability. After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB p.
Timing Analysis and Simulation for Signal Integrity Engineers
Author: Greg Edlund
Publisher: Pearson Education
ISBN: 0132797186
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
Every day, companies call upon their signal integrity engineers to make difficult decisions about design constraints and timing margins. Can I move these wires closer together? How many holes can I drill in this net? How far apart can I place these chips? Each design is unique: there’s no single recipe that answers all the questions. Today’s designs require ever greater precision, but design guides for specific digital interfaces are by nature conservative. Now, for the first time, there’s a complete guide to timing analysis and simulation that will help you manage the tradeoffs between signal integrity, performance, and cost. Writing from the perspective of a practicing SI engineer and team lead, Greg Edlund of IBM presents deep knowledge and quantitative techniques for making better decisions about digital interface design. Edlund shares his insights into how and why digital interfaces fail, revealing how fundamental sources of pathological effects can combine to create fault conditions. You won’t just learn Edlund’s expert techniques for avoiding failures: you’ll learn how to develop the right approach for your own projects and environment. Coverage includes • Systematically ensure that interfaces will operate with positive timing margin over the product’s lifetime–without incurring excess cost • Understand essential chip-to-chip timing concepts in the context of signal integrity • Collect the right information upfront, so you can analyze new designs more effectively • Review the circuits that store information in CMOS state machines–and how they fail • Learn how to time common-clock, source synchronous, and high-speed serial transfers • Thoroughly understand how interconnect electrical characteristics affect timing: propagation delay, impedance profile, crosstalk, resonances, and frequency-dependent loss • Model 3D discontinuities using electromagnetic field solvers • Walk through four case studies: coupled differential vias, land grid array connector, DDR2 memory data transfer, and PCI Express channel • Appendices present a refresher on SPICE modeling and a high-level conceptual framework for electromagnetic field behavior Objective, realistic, and practical, this is the signal integrity resource engineers have been searching for. Preface xiii Acknowledgments xvi About the Author xix About the Cover xx Chapter 1: Engineering Reliable Digital Interfaces 1 Chapter 2: Chip-to-Chip Timing 13 Chapter 3: Inside IO Circuits 39 Chapter 4: Modeling 3D Discontinuities 73 Chapter 5: Practical 3D Examples 101 Chapter 6: DDR2 Case Study 133 Chapter 7: PCI Express Case Study 175 Appendix A: A Short CMOS and SPICE Primer 209 Appendix B: A Stroll Through 3D Fields 219 Endnotes 233 Index 235
Publisher: Pearson Education
ISBN: 0132797186
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
Every day, companies call upon their signal integrity engineers to make difficult decisions about design constraints and timing margins. Can I move these wires closer together? How many holes can I drill in this net? How far apart can I place these chips? Each design is unique: there’s no single recipe that answers all the questions. Today’s designs require ever greater precision, but design guides for specific digital interfaces are by nature conservative. Now, for the first time, there’s a complete guide to timing analysis and simulation that will help you manage the tradeoffs between signal integrity, performance, and cost. Writing from the perspective of a practicing SI engineer and team lead, Greg Edlund of IBM presents deep knowledge and quantitative techniques for making better decisions about digital interface design. Edlund shares his insights into how and why digital interfaces fail, revealing how fundamental sources of pathological effects can combine to create fault conditions. You won’t just learn Edlund’s expert techniques for avoiding failures: you’ll learn how to develop the right approach for your own projects and environment. Coverage includes • Systematically ensure that interfaces will operate with positive timing margin over the product’s lifetime–without incurring excess cost • Understand essential chip-to-chip timing concepts in the context of signal integrity • Collect the right information upfront, so you can analyze new designs more effectively • Review the circuits that store information in CMOS state machines–and how they fail • Learn how to time common-clock, source synchronous, and high-speed serial transfers • Thoroughly understand how interconnect electrical characteristics affect timing: propagation delay, impedance profile, crosstalk, resonances, and frequency-dependent loss • Model 3D discontinuities using electromagnetic field solvers • Walk through four case studies: coupled differential vias, land grid array connector, DDR2 memory data transfer, and PCI Express channel • Appendices present a refresher on SPICE modeling and a high-level conceptual framework for electromagnetic field behavior Objective, realistic, and practical, this is the signal integrity resource engineers have been searching for. Preface xiii Acknowledgments xvi About the Author xix About the Cover xx Chapter 1: Engineering Reliable Digital Interfaces 1 Chapter 2: Chip-to-Chip Timing 13 Chapter 3: Inside IO Circuits 39 Chapter 4: Modeling 3D Discontinuities 73 Chapter 5: Practical 3D Examples 101 Chapter 6: DDR2 Case Study 133 Chapter 7: PCI Express Case Study 175 Appendix A: A Short CMOS and SPICE Primer 209 Appendix B: A Stroll Through 3D Fields 219 Endnotes 233 Index 235
A Signal Integrity Engineer's Companion
Author: Geoff Lawday
Publisher: Pearson Education
ISBN: 0132797232
Category : Technology & Engineering
Languages : en
Pages : 573
Book Description
A Signal Integrity Engineer’s Companion Real-Time Test and Measurement and Design Simulation Geoff Lawday David Ireland Greg Edlund Foreword by Chris Edwards, Editor, IET Electronics Systems and Software magazine Prentice Hall Modern Semiconductor Design Series Prentice Hall Signal Integrity Library Use Real-World Test and Measurement Techniques to Systematically Eliminate Signal Integrity Problems This is the industry’s most comprehensive, authoritative, and practical guide to modern Signal Integrity (SI) test and measurement for high-speed digital designs. Three of the field’s leading experts guide you through systematically detecting, observing, analyzing, and rectifying both modern logic signal defects and embedded system malfunctions. The authors cover the entire life cycle of embedded system design from specification and simulation onward, illuminating key techniques and concepts with easy-to-understand illustrations. Writing for all electrical engineers, signal integrity engineers, and chip designers, the authors show how to use real-time test and measurement to address today’s increasingly difficult interoperability and compliance requirements. They also present detailed, start-to-finish case studies that walk you through commonly encountered design challenges, including ensuring that interfaces consistently operate with positive timing margins without incurring excessive cost; calculating total jitter budgets; and managing complex tradeoffs in high-speed serial interface design. Coverage includes Understanding the complex signal integrity issues that arise in today’s high-speed designs Learning how eye diagrams, automated compliance tests, and signal analysis measurements can help you identify and solve SI problems Reviewing the electrical characteristics of today’s most widely used CMOS IO circuits Performing signal path analyses based on intuitive Time-Domain Reflectometry (TDR) techniques Achieving more accurate real-time signal measurements and avoiding probe problems and artifacts Utilizing digital oscilloscopes and logic analyzers to make accurate measurements in high-frequency environments Simulating real-world signals that stress digital circuits and expose SI faults Accurately measuring jitter and other RF parameters in wireless applications About the Authors: Dr. Geoff Lawday is Tektronix Professor in Measurement at Buckinghamshire New University, England. He delivers courses in signal integrity engineering and high performance bus systems at the University Tektronix laboratory, and presents signal integrity seminars throughout Europe on behalf of Tektronix. David Ireland, European and Asian design and manufacturing marketing manager for Tektronix, has more than 30 years of experience in test and measurement. He writes regularly on signal integrity for leading technical journals. Greg Edlund, Senior Engineer, IBM Global Engineering Solutions division, has participated in development and testing for ten high-performance computing platforms. He authored Timing Analysis and Simulation for Signal Integrity Engineers (Prentice Hall).
Publisher: Pearson Education
ISBN: 0132797232
Category : Technology & Engineering
Languages : en
Pages : 573
Book Description
A Signal Integrity Engineer’s Companion Real-Time Test and Measurement and Design Simulation Geoff Lawday David Ireland Greg Edlund Foreword by Chris Edwards, Editor, IET Electronics Systems and Software magazine Prentice Hall Modern Semiconductor Design Series Prentice Hall Signal Integrity Library Use Real-World Test and Measurement Techniques to Systematically Eliminate Signal Integrity Problems This is the industry’s most comprehensive, authoritative, and practical guide to modern Signal Integrity (SI) test and measurement for high-speed digital designs. Three of the field’s leading experts guide you through systematically detecting, observing, analyzing, and rectifying both modern logic signal defects and embedded system malfunctions. The authors cover the entire life cycle of embedded system design from specification and simulation onward, illuminating key techniques and concepts with easy-to-understand illustrations. Writing for all electrical engineers, signal integrity engineers, and chip designers, the authors show how to use real-time test and measurement to address today’s increasingly difficult interoperability and compliance requirements. They also present detailed, start-to-finish case studies that walk you through commonly encountered design challenges, including ensuring that interfaces consistently operate with positive timing margins without incurring excessive cost; calculating total jitter budgets; and managing complex tradeoffs in high-speed serial interface design. Coverage includes Understanding the complex signal integrity issues that arise in today’s high-speed designs Learning how eye diagrams, automated compliance tests, and signal analysis measurements can help you identify and solve SI problems Reviewing the electrical characteristics of today’s most widely used CMOS IO circuits Performing signal path analyses based on intuitive Time-Domain Reflectometry (TDR) techniques Achieving more accurate real-time signal measurements and avoiding probe problems and artifacts Utilizing digital oscilloscopes and logic analyzers to make accurate measurements in high-frequency environments Simulating real-world signals that stress digital circuits and expose SI faults Accurately measuring jitter and other RF parameters in wireless applications About the Authors: Dr. Geoff Lawday is Tektronix Professor in Measurement at Buckinghamshire New University, England. He delivers courses in signal integrity engineering and high performance bus systems at the University Tektronix laboratory, and presents signal integrity seminars throughout Europe on behalf of Tektronix. David Ireland, European and Asian design and manufacturing marketing manager for Tektronix, has more than 30 years of experience in test and measurement. He writes regularly on signal integrity for leading technical journals. Greg Edlund, Senior Engineer, IBM Global Engineering Solutions division, has participated in development and testing for ten high-performance computing platforms. He authored Timing Analysis and Simulation for Signal Integrity Engineers (Prentice Hall).
Signal and Power Integrity in Digital Systems
Author: James Edgar Buchanan
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 408
Book Description
"This book shows designers how to ensure signal integrity and control noise in high-speed digital systems - particularly important in a Pentium-paced environment where functional logic design is no longer separable from electrical and mechanical design." "Highlighting TTL, CMOS, and BiCMOS logic applications in a single source, Signal and Power Integrity in Digital Systems provides a practical solutions-oriented approach to a wide variety of relevant interconnection and timing issues." "Special features include noise tolerant logic architectures; power distribution techniques that reduce noise; clock distribution techniques that ensure clock signal quality; signal interconnection techniques that reduce crosstalk, signal loading, and transmission-line effects; how to get optimum performance from high-speed memory devices; and system application tips for high-speed PALs, PLAs, FIFOs, and ASICs." "Designers will also appreciate the practical engineering approximations provided for the calculation of design parameters along with illustrations and numerous tables usable for quick reference and comparison of characteristics." "It's a book every digital designer should have - engineers involved in the design of computers, peripherals, signal processors, and control and communications equipment, as well as young engineers facing their first designs using high-speed logic devices."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 408
Book Description
"This book shows designers how to ensure signal integrity and control noise in high-speed digital systems - particularly important in a Pentium-paced environment where functional logic design is no longer separable from electrical and mechanical design." "Highlighting TTL, CMOS, and BiCMOS logic applications in a single source, Signal and Power Integrity in Digital Systems provides a practical solutions-oriented approach to a wide variety of relevant interconnection and timing issues." "Special features include noise tolerant logic architectures; power distribution techniques that reduce noise; clock distribution techniques that ensure clock signal quality; signal interconnection techniques that reduce crosstalk, signal loading, and transmission-line effects; how to get optimum performance from high-speed memory devices; and system application tips for high-speed PALs, PLAs, FIFOs, and ASICs." "Designers will also appreciate the practical engineering approximations provided for the calculation of design parameters along with illustrations and numerous tables usable for quick reference and comparison of characteristics." "It's a book every digital designer should have - engineers involved in the design of computers, peripherals, signal processors, and control and communications equipment, as well as young engineers facing their first designs using high-speed logic devices."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved
Signal and Power Integrity--simplified
Author: Eric Bogatin
Publisher: Pearson Education
ISBN: 0132349795
Category : Technology & Engineering
Languages : en
Pages : 793
Book Description
With the inclusion of the two new hot topics in signal integrity, power integrity and high speed serial links, this book will be the most up to date complete guide to understanding and designing for signal integrity.
Publisher: Pearson Education
ISBN: 0132349795
Category : Technology & Engineering
Languages : en
Pages : 793
Book Description
With the inclusion of the two new hot topics in signal integrity, power integrity and high speed serial links, this book will be the most up to date complete guide to understanding and designing for signal integrity.
Power Integrity for Electrical and Computer Engineers
Author: J. Ted Dibene, II
Publisher: John Wiley & Sons
ISBN: 1119263298
Category : Science
Languages : en
Pages : 557
Book Description
A professional guide to the fundamentals of power integrity analysis with an emphasis on silicon level power integrity Power Integrity for Electrical and Computer Engineers embraces the most recent changes in the field, offers a comprehensive introduction to the discipline of power integrity, and provides an overview of the fundamental principles. Written by noted experts on the topic, the book goes beyond most other resources to focus on the detailed aspects of silicon and optimization techniques in order to broaden the field of study. This important book offers coverage of a wide range of topics including signal analysis, EM concepts for PI, frequency domain analysis for PI, numerical methods (overview) for PI, and silicon device PI modeling. Power Integrity for Electrical and Computer Engineers examine platform technologies, system considerations, power conversion, system level modeling, and optimization methodologies. To reinforce the material presented, the authors include example problems. This important book: • Includes coverage on convergence, accuracy, and error analysis and explains how these can be used to analyze power integrity problems • Contains information for modeling the power converter from the PDN to the load in a full system level model • Explores areas of device level modeling of silicon as related to power integrity • Contains example word problems that are related to an individual chapter’s subject Written for electrical and computer engineers and academics, Power Integrity for Electrical and Computer Engineers is an authoritative guide to the fundamentals of power integrity and explores the topics of power integrity analysis, power integrity analytics, silicon level power integrity, and optimization techniques.
Publisher: John Wiley & Sons
ISBN: 1119263298
Category : Science
Languages : en
Pages : 557
Book Description
A professional guide to the fundamentals of power integrity analysis with an emphasis on silicon level power integrity Power Integrity for Electrical and Computer Engineers embraces the most recent changes in the field, offers a comprehensive introduction to the discipline of power integrity, and provides an overview of the fundamental principles. Written by noted experts on the topic, the book goes beyond most other resources to focus on the detailed aspects of silicon and optimization techniques in order to broaden the field of study. This important book offers coverage of a wide range of topics including signal analysis, EM concepts for PI, frequency domain analysis for PI, numerical methods (overview) for PI, and silicon device PI modeling. Power Integrity for Electrical and Computer Engineers examine platform technologies, system considerations, power conversion, system level modeling, and optimization methodologies. To reinforce the material presented, the authors include example problems. This important book: • Includes coverage on convergence, accuracy, and error analysis and explains how these can be used to analyze power integrity problems • Contains information for modeling the power converter from the PDN to the load in a full system level model • Explores areas of device level modeling of silicon as related to power integrity • Contains example word problems that are related to an individual chapter’s subject Written for electrical and computer engineers and academics, Power Integrity for Electrical and Computer Engineers is an authoritative guide to the fundamentals of power integrity and explores the topics of power integrity analysis, power integrity analytics, silicon level power integrity, and optimization techniques.
High-Speed Signaling
Author: Kyung Suk (Dan) Oh
Publisher: Prentice Hall
ISBN: 0132827115
Category : Technology & Engineering
Languages : en
Pages : 608
Book Description
New System-Level Techniques for Optimizing Signal/Power Integrity in High-Speed Interfaces--from Pioneering Innovators at Rambus, Stanford, Berkeley, and MIT As data communication rates accelerate well into the multi-gigahertz range, ensuring signal integrity both on- and off-chip has become crucial. Signal integrity can no longer be addressed solely through improvements in package or board-level design: Diverse engineering teams must work together closely from the earliest design stages to identify the best system-level solutions. In High-Speed Signaling, several of the field’s most respected practitioners and researchers introduce cutting-edge modeling, simulation, and optimization techniques for meeting this challenge. Edited by pioneering experts Drs. Dan Oh and Chuck Yuan, these contributors explain why noise and jitter are no longer separable, demonstrate how to model their increasingly complex interactions, and thoroughly introduce a new simulation methodology for predicting link-level performance with unprecedented accuracy. The authors address signal integrity from architecture through high-volume production, thoroughly discussing design, implementation, and verification. Coverage includes New advances in passive-channel modeling, power-supply noise and jitter modeling, and system margin prediction Methodologies for balancing system voltage and timing budgets to improve system robustness in high-volume manufacturing Practical, stable formulae for converting key network parameters Improved solutions for difficult problems in the broadband modeling of interconnects Equalization techniques for optimizing channel performance Important new insights into the relationships between jitter and clocking topologies New on-chip measurement techniques for in-situ link performance testing Trends and future directions in signal integrity engineering High-Speed Signaling thoroughly introduces new techniques pioneered at Rambus and other leading high-tech companies and universities: approaches that have never before been presented with this much practical detail. It will be invaluable to everyone concerned with signal integrity, including signal and power integrity engineers, high-speed I/O circuit designers, and system-level board design engineers.
Publisher: Prentice Hall
ISBN: 0132827115
Category : Technology & Engineering
Languages : en
Pages : 608
Book Description
New System-Level Techniques for Optimizing Signal/Power Integrity in High-Speed Interfaces--from Pioneering Innovators at Rambus, Stanford, Berkeley, and MIT As data communication rates accelerate well into the multi-gigahertz range, ensuring signal integrity both on- and off-chip has become crucial. Signal integrity can no longer be addressed solely through improvements in package or board-level design: Diverse engineering teams must work together closely from the earliest design stages to identify the best system-level solutions. In High-Speed Signaling, several of the field’s most respected practitioners and researchers introduce cutting-edge modeling, simulation, and optimization techniques for meeting this challenge. Edited by pioneering experts Drs. Dan Oh and Chuck Yuan, these contributors explain why noise and jitter are no longer separable, demonstrate how to model their increasingly complex interactions, and thoroughly introduce a new simulation methodology for predicting link-level performance with unprecedented accuracy. The authors address signal integrity from architecture through high-volume production, thoroughly discussing design, implementation, and verification. Coverage includes New advances in passive-channel modeling, power-supply noise and jitter modeling, and system margin prediction Methodologies for balancing system voltage and timing budgets to improve system robustness in high-volume manufacturing Practical, stable formulae for converting key network parameters Improved solutions for difficult problems in the broadband modeling of interconnects Equalization techniques for optimizing channel performance Important new insights into the relationships between jitter and clocking topologies New on-chip measurement techniques for in-situ link performance testing Trends and future directions in signal integrity engineering High-Speed Signaling thoroughly introduces new techniques pioneered at Rambus and other leading high-tech companies and universities: approaches that have never before been presented with this much practical detail. It will be invaluable to everyone concerned with signal integrity, including signal and power integrity engineers, high-speed I/O circuit designers, and system-level board design engineers.