Positive Unlabeled Learning

Positive Unlabeled Learning PDF Author: Kristen Jaskie
Publisher: Morgan & Claypool Publishers
ISBN: 1636393098
Category : Computers
Languages : en
Pages : 152

Get Book Here

Book Description
Machine learning and artificial intelligence (AI) are powerful tools that create predictive models, extract information, and help make complex decisions. They do this by examining an enormous quantity of labeled training data to find patterns too complex for human observation. However, in many real-world applications, well-labeled data can be difficult, expensive, or even impossible to obtain. In some cases, such as when identifying rare objects like new archeological sites or secret enemy military facilities in satellite images, acquiring labels could require months of trained human observers at incredible expense. Other times, as when attempting to predict disease infection during a pandemic such as COVID-19, reliable true labels may be nearly impossible to obtain early on due to lack of testing equipment or other factors. In that scenario, identifying even a small amount of truly negative data may be impossible due to the high false negative rate of available tests. In such problems, it is possible to label a small subset of data as belonging to the class of interest though it is impractical to manually label all data not of interest. We are left with a small set of positive labeled data and a large set of unknown and unlabeled data. Readers will explore this Positive and Unlabeled learning (PU learning) problem in depth. The book rigorously defines the PU learning problem, discusses several common assumptions that are frequently made about the problem and their implications, and considers how to evaluate solutions for this problem before describing several of the most popular algorithms to solve this problem. It explores several uses for PU learning including applications in biological/medical, business, security, and signal processing. This book also provides high-level summaries of several related learning problems such as one-class classification, anomaly detection, and noisy learning and their relation to PU learning.

Positive Unlabeled Learning

Positive Unlabeled Learning PDF Author: Kristen Jaskie
Publisher: Morgan & Claypool Publishers
ISBN: 1636393098
Category : Computers
Languages : en
Pages : 152

Get Book Here

Book Description
Machine learning and artificial intelligence (AI) are powerful tools that create predictive models, extract information, and help make complex decisions. They do this by examining an enormous quantity of labeled training data to find patterns too complex for human observation. However, in many real-world applications, well-labeled data can be difficult, expensive, or even impossible to obtain. In some cases, such as when identifying rare objects like new archeological sites or secret enemy military facilities in satellite images, acquiring labels could require months of trained human observers at incredible expense. Other times, as when attempting to predict disease infection during a pandemic such as COVID-19, reliable true labels may be nearly impossible to obtain early on due to lack of testing equipment or other factors. In that scenario, identifying even a small amount of truly negative data may be impossible due to the high false negative rate of available tests. In such problems, it is possible to label a small subset of data as belonging to the class of interest though it is impractical to manually label all data not of interest. We are left with a small set of positive labeled data and a large set of unknown and unlabeled data. Readers will explore this Positive and Unlabeled learning (PU learning) problem in depth. The book rigorously defines the PU learning problem, discusses several common assumptions that are frequently made about the problem and their implications, and considers how to evaluate solutions for this problem before describing several of the most popular algorithms to solve this problem. It explores several uses for PU learning including applications in biological/medical, business, security, and signal processing. This book also provides high-level summaries of several related learning problems such as one-class classification, anomaly detection, and noisy learning and their relation to PU learning.

Algorithmic Learning Theory

Algorithmic Learning Theory PDF Author: Osamu Watanabe
Publisher: Springer
ISBN: 3540467696
Category : Computers
Languages : en
Pages : 375

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 10th International Conference on Algorithmic Learning Theory, ALT'99, held in Tokyo, Japan, in December 1999. The 26 full papers presented were carefully reviewed and selected from a total of 51 submissions. Also included are three invited papers. The papers are organized in sections on Learning Dimension, Inductive Inference, Inductive Logic Programming, PAC Learning, Mathematical Tools for Learning, Learning Recursive Functions, Query Learning and On-Line Learning.

Machine Learning: ECML 2005

Machine Learning: ECML 2005 PDF Author: João Gama
Publisher: Springer Science & Business Media
ISBN: 3540292438
Category : Computers
Languages : en
Pages : 784

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 16th European Conference on Machine Learning, ECML 2005, jointly held with PKDD 2005 in Porto, Portugal, in October 2005. The 40 revised full papers and 32 revised short papers presented together with abstracts of 6 invited talks were carefully reviewed and selected from 335 papers submitted to ECML and 30 papers submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.

Introduction to Semi-Supervised Learning

Introduction to Semi-Supervised Learning PDF Author: Xiaojin Geffner
Publisher: Springer Nature
ISBN: 3031015487
Category : Computers
Languages : en
Pages : 116

Get Book Here

Book Description
Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook

Geochemical Anomaly and Mineral Prospectivity Mapping in GIS

Geochemical Anomaly and Mineral Prospectivity Mapping in GIS PDF Author: E.J.M. Carranza
Publisher: Elsevier
ISBN: 008093031X
Category : Science
Languages : en
Pages : 365

Get Book Here

Book Description
Geochemical Anomaly and Mineral Prospectivity Mapping in GIS documents and explains, in three parts, geochemical anomaly and mineral prospectivity mapping by using a geographic information system (GIS). Part I reviews and couples the concepts of (a) mapping geochemical anomalies and mineral prospectivity and (b) spatial data models, management and operations in a GIS. Part II demonstrates GIS-aided and GIS-based techniques for analysis of robust thresholds in mapping of geochemical anomalies. Part III explains GIS-aided and GIS-based techniques for spatial data analysis and geo-information sybthesis for conceptual and predictive modeling of mineral prospectivity. Because methods of geochemical anomaly mapping and mineral potential mapping are highly specialized yet diverse, the book explains only methods in which GIS plays an important role. The book avoids using language and functional organization of particular commercial GIS software, but explains, where necessary, GIS functionality and spatial data structures appropriate to problems in geochemical anomaly mapping and mineral potential mapping. Because GIS-based methods of spatial data analysis and spatial data integration are quantitative, which can be complicated to non-numerate readers, the book simplifies explanations of mathematical concepts and their applications so that the methods demonstrated would be useful to professional geoscientists, to mineral explorationists and to research students in fields that involve analysis and integration of maps or spatial datasets. The book provides adequate illustrations for more thorough explanation of the various concepts. - Explains GIS functionality and spatial data structures appropriate regardless of the particular GIS software in use - Simplifies explanation of mathematical concepts and application - Illustrated for more thorough explanation of concepts

Knowledge Discovery from Sensor Data

Knowledge Discovery from Sensor Data PDF Author: Mohamed Medhat Gaber
Publisher: Springer Science & Business Media
ISBN: 3642125182
Category : Computers
Languages : en
Pages : 235

Get Book Here

Book Description
This book contains thoroughly refereed extended papers from the Second International Workshop on Knowledge Discovery from Sensor Data, Sensor-KDD 2008, held in Las Vegas, NV, USA, in August 2008. The 12 revised papers presented together with an invited paper were carefully reviewed and selected from numerous submissions. The papers feature important aspects of knowledge discovery from sensor data, e.g., data mining for diagnostic debugging; incremental histogram distribution for change detection; situation-aware adaptive visualization; WiFi mining; mobile sensor data mining; incremental anomaly detection; and spatiotemporal neighborhood discovery for sensor data.

Semi-Supervised Learning

Semi-Supervised Learning PDF Author: Olivier Chapelle
Publisher: MIT Press
ISBN: 0262514125
Category : Computers
Languages : en
Pages : 525

Get Book Here

Book Description
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

Graph Representation Learning

Graph Representation Learning PDF Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141

Get Book Here

Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining PDF Author: Thanaruk Theeramunkong
Publisher: Springer
ISBN: 3642013074
Category : Computers
Languages : en
Pages : 1098

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2009, held in Bangkok, Thailand, in April 2009. The 39 revised full papers and 73 revised short papers presented together with 3 keynote talks were carefully reviewed and selected from 338 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas including data mining, data warehousing, machine learning, databases, statistics, knowledge acquisition, automatic scientific discovery, data visualization, causal induction, and knowledge-based systems.

Encyclopedia of Distances

Encyclopedia of Distances PDF Author: Michel Marie Deza
Publisher: Springer
ISBN: 3662443422
Category : Mathematics
Languages : en
Pages : 731

Get Book Here

Book Description
This updated and revised third edition of the leading reference volume on distance metrics includes new items from very active research areas in the use of distances and metrics such as geometry, graph theory, probability theory and analysis. Among the new topics included are, for example, polyhedral metric space, nearness matrix problems, distances between belief assignments, distance-related animal settings, diamond-cutting distances, natural units of length, Heidegger’s de-severance distance, and brain distances. The publication of this volume coincides with intensifying research efforts into metric spaces and especially distance design for applications. Accurate metrics have become a crucial goal in computational biology, image analysis, speech recognition and information retrieval. Leaving aside the practical questions that arise during the selection of a ‘good’ distance function, this work focuses on providing the research community with an invaluable comprehensive listing of the main available distances. As well as providing standalone introductions and definitions, the encyclopedia facilitates swift cross-referencing with easily navigable bold-faced textual links to core entries. In addition to distances themselves, the authors have collated numerous fascinating curiosities in their Who’s Who of metrics, including distance-related notions and paradigms that enable applied mathematicians in other sectors to deploy research tools that non-specialists justly view as arcane. In expanding access to these techniques, and in many cases enriching the context of distances themselves, this peerless volume is certain to stimulate fresh research.