Author: John Y. Campbell
Publisher: OUP Oxford
ISBN: 019160691X
Category : Business & Economics
Languages : en
Pages : 272
Book Description
Academic finance has had a remarkable impact on many financial services. Yet long-term investors have received curiously little guidance from academic financial economists. Mean-variance analysis, developed almost fifty years ago, has provided a basic paradigm for portfolio choice. This approach usefully emphasizes the ability of diversification to reduce risk, but it ignores several critically important factors. Most notably, the analysis is static; it assumes that investors care only about risks to wealth one period ahead. However, many investors—-both individuals and institutions such as charitable foundations or universities—-seek to finance a stream of consumption over a long lifetime. In addition, mean-variance analysis treats financial wealth in isolation from income. Long-term investors typically receive a stream of income and use it, along with financial wealth, to support their consumption. At the theoretical level, it is well understood that the solution to a long-term portfolio choice problem can be very different from the solution to a short-term problem. Long-term investors care about intertemporal shocks to investment opportunities and labor income as well as shocks to wealth itself, and they may use financial assets to hedge their intertemporal risks. This should be important in practice because there is a great deal of empirical evidence that investment opportunities—-both interest rates and risk premia on bonds and stocks—-vary through time. Yet this insight has had little influence on investment practice because it is hard to solve for optimal portfolios in intertemporal models. This book seeks to develop the intertemporal approach into an empirical paradigm that can compete with the standard mean-variance analysis. The book shows that long-term inflation-indexed bonds are the riskless asset for long-term investors, it explains the conditions under which stocks are safer assets for long-term than for short-term investors, and it shows how labor income influences portfolio choice. These results shed new light on the rules of thumb used by financial planners. The book explains recent advances in both analytical and numerical methods, and shows how they can be used to understand the portfolio choice problems of long-term investors.
Strategic Asset Allocation
Author: John Y. Campbell
Publisher: OUP Oxford
ISBN: 019160691X
Category : Business & Economics
Languages : en
Pages : 272
Book Description
Academic finance has had a remarkable impact on many financial services. Yet long-term investors have received curiously little guidance from academic financial economists. Mean-variance analysis, developed almost fifty years ago, has provided a basic paradigm for portfolio choice. This approach usefully emphasizes the ability of diversification to reduce risk, but it ignores several critically important factors. Most notably, the analysis is static; it assumes that investors care only about risks to wealth one period ahead. However, many investors—-both individuals and institutions such as charitable foundations or universities—-seek to finance a stream of consumption over a long lifetime. In addition, mean-variance analysis treats financial wealth in isolation from income. Long-term investors typically receive a stream of income and use it, along with financial wealth, to support their consumption. At the theoretical level, it is well understood that the solution to a long-term portfolio choice problem can be very different from the solution to a short-term problem. Long-term investors care about intertemporal shocks to investment opportunities and labor income as well as shocks to wealth itself, and they may use financial assets to hedge their intertemporal risks. This should be important in practice because there is a great deal of empirical evidence that investment opportunities—-both interest rates and risk premia on bonds and stocks—-vary through time. Yet this insight has had little influence on investment practice because it is hard to solve for optimal portfolios in intertemporal models. This book seeks to develop the intertemporal approach into an empirical paradigm that can compete with the standard mean-variance analysis. The book shows that long-term inflation-indexed bonds are the riskless asset for long-term investors, it explains the conditions under which stocks are safer assets for long-term than for short-term investors, and it shows how labor income influences portfolio choice. These results shed new light on the rules of thumb used by financial planners. The book explains recent advances in both analytical and numerical methods, and shows how they can be used to understand the portfolio choice problems of long-term investors.
Publisher: OUP Oxford
ISBN: 019160691X
Category : Business & Economics
Languages : en
Pages : 272
Book Description
Academic finance has had a remarkable impact on many financial services. Yet long-term investors have received curiously little guidance from academic financial economists. Mean-variance analysis, developed almost fifty years ago, has provided a basic paradigm for portfolio choice. This approach usefully emphasizes the ability of diversification to reduce risk, but it ignores several critically important factors. Most notably, the analysis is static; it assumes that investors care only about risks to wealth one period ahead. However, many investors—-both individuals and institutions such as charitable foundations or universities—-seek to finance a stream of consumption over a long lifetime. In addition, mean-variance analysis treats financial wealth in isolation from income. Long-term investors typically receive a stream of income and use it, along with financial wealth, to support their consumption. At the theoretical level, it is well understood that the solution to a long-term portfolio choice problem can be very different from the solution to a short-term problem. Long-term investors care about intertemporal shocks to investment opportunities and labor income as well as shocks to wealth itself, and they may use financial assets to hedge their intertemporal risks. This should be important in practice because there is a great deal of empirical evidence that investment opportunities—-both interest rates and risk premia on bonds and stocks—-vary through time. Yet this insight has had little influence on investment practice because it is hard to solve for optimal portfolios in intertemporal models. This book seeks to develop the intertemporal approach into an empirical paradigm that can compete with the standard mean-variance analysis. The book shows that long-term inflation-indexed bonds are the riskless asset for long-term investors, it explains the conditions under which stocks are safer assets for long-term than for short-term investors, and it shows how labor income influences portfolio choice. These results shed new light on the rules of thumb used by financial planners. The book explains recent advances in both analytical and numerical methods, and shows how they can be used to understand the portfolio choice problems of long-term investors.
Predictions, Nonlinearities and Portfolio Choice
Author: Friedrich Christian Kruse
Publisher: BoD – Books on Demand
ISBN: 3844101853
Category : Business & Economics
Languages : en
Pages : 222
Book Description
Finance researchers and asset management practitioners put a lot of effort into the question of optimal asset allocation. With this respect, a lot of research has been conducted on portfolio decision making as well as quantitative modeling and prediction models. This study brings together three fields of research, which are usually analyzed in an isolated manner in the literature: - Predictability of asset returns and their covariance matrix - Optimal portfolio decision making - Nonlinear modeling, performed by artificial neural networks, and their impact on predictions as well as optimal portfolio construction Including predictability in asset allocation is the focus of this work and it pays special attention to issues related to nonlinearities. The contribution of this study to the portfolio choice literature is twofold. First, motivated by the evidence of linear predictability, the impact of nonlinear predictions on portfolio performances is analyzed. Predictions are empirically performed for an investor who invests in equities (represented by the DAX index), bonds (represented by the REXP index) and a risk-free rate. Second, a solution to the dynamic programming problem for intertemporal portfolio choice is presented. The method is based on functional approximations of the investor's value function with artificial neural networks. The method is easily capable of handling multiple state variables. Hence, the effect of adding predictive parameters to the state space is the focus of analysis as well as the impacts of estimation biases and the view of a Bayesian investor on intertemporal portfolio choice. One important empirical result shows that residual correlation among state variables have an impact on intertemporal portfolio decision making.
Publisher: BoD – Books on Demand
ISBN: 3844101853
Category : Business & Economics
Languages : en
Pages : 222
Book Description
Finance researchers and asset management practitioners put a lot of effort into the question of optimal asset allocation. With this respect, a lot of research has been conducted on portfolio decision making as well as quantitative modeling and prediction models. This study brings together three fields of research, which are usually analyzed in an isolated manner in the literature: - Predictability of asset returns and their covariance matrix - Optimal portfolio decision making - Nonlinear modeling, performed by artificial neural networks, and their impact on predictions as well as optimal portfolio construction Including predictability in asset allocation is the focus of this work and it pays special attention to issues related to nonlinearities. The contribution of this study to the portfolio choice literature is twofold. First, motivated by the evidence of linear predictability, the impact of nonlinear predictions on portfolio performances is analyzed. Predictions are empirically performed for an investor who invests in equities (represented by the DAX index), bonds (represented by the REXP index) and a risk-free rate. Second, a solution to the dynamic programming problem for intertemporal portfolio choice is presented. The method is based on functional approximations of the investor's value function with artificial neural networks. The method is easily capable of handling multiple state variables. Hence, the effect of adding predictive parameters to the state space is the focus of analysis as well as the impacts of estimation biases and the view of a Bayesian investor on intertemporal portfolio choice. One important empirical result shows that residual correlation among state variables have an impact on intertemporal portfolio decision making.
Asset Pricing and Portfolio Choice Theory
Author: Kerry Back
Publisher: Oxford University Press
ISBN: 019970144X
Category : Business & Economics
Languages : en
Pages : 504
Book Description
In Asset Pricing and Portfolio Choice Theory, Kerry E. Back at last offers what is at once a welcoming introduction to and a comprehensive overview of asset pricing. Useful as a textbook for graduate students in finance, with extensive exercises and a solutions manual available for professors, the book will also serve as an essential reference for scholars and professionals, as it includes detailed proofs and calculations as section appendices. Topics covered include the classical results on single-period, discrete-time, and continuous-time models, as well as various proposed explanations for the equity premium and risk-free rate puzzles and chapters on heterogeneous beliefs, asymmetric information, non-expected utility preferences, and production models. The book includes numerous exercises designed to provide practice with the concepts and to introduce additional results. Each chapter concludes with a notes and references section that supplies pathways to additional developments in the field.
Publisher: Oxford University Press
ISBN: 019970144X
Category : Business & Economics
Languages : en
Pages : 504
Book Description
In Asset Pricing and Portfolio Choice Theory, Kerry E. Back at last offers what is at once a welcoming introduction to and a comprehensive overview of asset pricing. Useful as a textbook for graduate students in finance, with extensive exercises and a solutions manual available for professors, the book will also serve as an essential reference for scholars and professionals, as it includes detailed proofs and calculations as section appendices. Topics covered include the classical results on single-period, discrete-time, and continuous-time models, as well as various proposed explanations for the equity premium and risk-free rate puzzles and chapters on heterogeneous beliefs, asymmetric information, non-expected utility preferences, and production models. The book includes numerous exercises designed to provide practice with the concepts and to introduce additional results. Each chapter concludes with a notes and references section that supplies pathways to additional developments in the field.
Financial Markets Theory
Author: Emilio Barucci
Publisher: Springer
ISBN: 1447173228
Category : Mathematics
Languages : en
Pages : 843
Book Description
This work, now in a thoroughly revised second edition, presents the economic foundations of financial markets theory from a mathematically rigorous standpoint and offers a self-contained critical discussion based on empirical results. It is the only textbook on the subject to include more than two hundred exercises, with detailed solutions to selected exercises. Financial Markets Theory covers classical asset pricing theory in great detail, including utility theory, equilibrium theory, portfolio selection, mean-variance portfolio theory, CAPM, CCAPM, APT, and the Modigliani-Miller theorem. Starting from an analysis of the empirical evidence on the theory, the authors provide a discussion of the relevant literature, pointing out the main advances in classical asset pricing theory and the new approaches designed to address asset pricing puzzles and open problems (e.g., behavioral finance). Later chapters in the book contain more advanced material, including on the role of information in financial markets, non-classical preferences, noise traders and market microstructure. This textbook is aimed at graduate students in mathematical finance and financial economics, but also serves as a useful reference for practitioners working in insurance, banking, investment funds and financial consultancy. Introducing necessary tools from microeconomic theory, this book is highly accessible and completely self-contained. Advance praise for the second edition: "Financial Markets Theory is comprehensive, rigorous, and yet highly accessible. With their second edition, Barucci and Fontana have set an even higher standard!"Darrell Duffie, Dean Witter Distinguished Professor of Finance, Graduate School of Business, Stanford University "This comprehensive book is a great self-contained source for studying most major theoretical aspects of financial economics. What makes the book particularly useful is that it provides a lot of intuition, detailed discussions of empirical implications, a very thorough survey of the related literature, and many completely solved exercises. The second edition covers more ground and provides many more proofs, and it will be a handy addition to the library of every student or researcher in the field."Jaksa Cvitanic, Richard N. Merkin Professor of Mathematical Finance, Caltech "The second edition of Financial Markets Theory by Barucci and Fontana is a superb achievement that knits together all aspects of modern finance theory, including financial markets microstructure, in a consistent and self-contained framework. Many exercises, together with their detailed solutions, make this book indispensable for serious students in finance."Michel Crouhy, Head of Research and Development, NATIXIS
Publisher: Springer
ISBN: 1447173228
Category : Mathematics
Languages : en
Pages : 843
Book Description
This work, now in a thoroughly revised second edition, presents the economic foundations of financial markets theory from a mathematically rigorous standpoint and offers a self-contained critical discussion based on empirical results. It is the only textbook on the subject to include more than two hundred exercises, with detailed solutions to selected exercises. Financial Markets Theory covers classical asset pricing theory in great detail, including utility theory, equilibrium theory, portfolio selection, mean-variance portfolio theory, CAPM, CCAPM, APT, and the Modigliani-Miller theorem. Starting from an analysis of the empirical evidence on the theory, the authors provide a discussion of the relevant literature, pointing out the main advances in classical asset pricing theory and the new approaches designed to address asset pricing puzzles and open problems (e.g., behavioral finance). Later chapters in the book contain more advanced material, including on the role of information in financial markets, non-classical preferences, noise traders and market microstructure. This textbook is aimed at graduate students in mathematical finance and financial economics, but also serves as a useful reference for practitioners working in insurance, banking, investment funds and financial consultancy. Introducing necessary tools from microeconomic theory, this book is highly accessible and completely self-contained. Advance praise for the second edition: "Financial Markets Theory is comprehensive, rigorous, and yet highly accessible. With their second edition, Barucci and Fontana have set an even higher standard!"Darrell Duffie, Dean Witter Distinguished Professor of Finance, Graduate School of Business, Stanford University "This comprehensive book is a great self-contained source for studying most major theoretical aspects of financial economics. What makes the book particularly useful is that it provides a lot of intuition, detailed discussions of empirical implications, a very thorough survey of the related literature, and many completely solved exercises. The second edition covers more ground and provides many more proofs, and it will be a handy addition to the library of every student or researcher in the field."Jaksa Cvitanic, Richard N. Merkin Professor of Mathematical Finance, Caltech "The second edition of Financial Markets Theory by Barucci and Fontana is a superb achievement that knits together all aspects of modern finance theory, including financial markets microstructure, in a consistent and self-contained framework. Many exercises, together with their detailed solutions, make this book indispensable for serious students in finance."Michel Crouhy, Head of Research and Development, NATIXIS
Asset Pricing and Portfolio Choice Theory
Author: Kerry E. Back
Publisher: Oxford University Press
ISBN: 0190241152
Category : Business & Economics
Languages : en
Pages : 608
Book Description
In the 2nd edition of Asset Pricing and Portfolio Choice Theory, Kerry E. Back offers a concise yet comprehensive introduction to and overview of asset pricing. Intended as a textbook for asset pricing theory courses at the Ph.D. or Masters in Quantitative Finance level with extensive exercises and a solutions manual available for professors, the book is also an essential reference for financial researchers and professionals, as it includes detailed proofs and calculations as section appendices. The first two parts of the book explain portfolio choice and asset pricing theory in single-period, discrete-time, and continuous-time models. For valuation, the focus throughout is on stochastic discount factors and their properties. A section on derivative securities covers the usual derivatives (options, forwards and futures, and term structure models) and also applications of perpetual options to corporate debt, real options, and optimal irreversible investment. A chapter on "explaining puzzles" and the last part of the book provide introductions to a number of additional current topics in asset pricing research, including rare disasters, long-run risks, external and internal habits, asymmetric and incomplete information, heterogeneous beliefs, and non-expected-utility preferences. Each chapter includes a "Notes and References" section providing additional pathways to the literature. Each chapter also includes extensive exercises.
Publisher: Oxford University Press
ISBN: 0190241152
Category : Business & Economics
Languages : en
Pages : 608
Book Description
In the 2nd edition of Asset Pricing and Portfolio Choice Theory, Kerry E. Back offers a concise yet comprehensive introduction to and overview of asset pricing. Intended as a textbook for asset pricing theory courses at the Ph.D. or Masters in Quantitative Finance level with extensive exercises and a solutions manual available for professors, the book is also an essential reference for financial researchers and professionals, as it includes detailed proofs and calculations as section appendices. The first two parts of the book explain portfolio choice and asset pricing theory in single-period, discrete-time, and continuous-time models. For valuation, the focus throughout is on stochastic discount factors and their properties. A section on derivative securities covers the usual derivatives (options, forwards and futures, and term structure models) and also applications of perpetual options to corporate debt, real options, and optimal irreversible investment. A chapter on "explaining puzzles" and the last part of the book provide introductions to a number of additional current topics in asset pricing research, including rare disasters, long-run risks, external and internal habits, asymmetric and incomplete information, heterogeneous beliefs, and non-expected-utility preferences. Each chapter includes a "Notes and References" section providing additional pathways to the literature. Each chapter also includes extensive exercises.
Handbooks in Operations Research and Management Science: Financial Engineering
Author: John R. Birge
Publisher: Elsevier
ISBN: 9780080553252
Category : Business & Economics
Languages : en
Pages : 1026
Book Description
The remarkable growth of financial markets over the past decades has been accompanied by an equally remarkable explosion in financial engineering, the interdisciplinary field focusing on applications of mathematical and statistical modeling and computational technology to problems in the financial services industry. The goals of financial engineering research are to develop empirically realistic stochastic models describing dynamics of financial risk variables, such as asset prices, foreign exchange rates, and interest rates, and to develop analytical, computational and statistical methods and tools to implement the models and employ them to design and evaluate financial products and processes to manage risk and to meet financial goals. This handbook describes the latest developments in this rapidly evolving field in the areas of modeling and pricing financial derivatives, building models of interest rates and credit risk, pricing and hedging in incomplete markets, risk management, and portfolio optimization. Leading researchers in each of these areas provide their perspective on the state of the art in terms of analysis, computation, and practical relevance. The authors describe essential results to date, fundamental methods and tools, as well as new views of the existing literature, opportunities, and challenges for future research.
Publisher: Elsevier
ISBN: 9780080553252
Category : Business & Economics
Languages : en
Pages : 1026
Book Description
The remarkable growth of financial markets over the past decades has been accompanied by an equally remarkable explosion in financial engineering, the interdisciplinary field focusing on applications of mathematical and statistical modeling and computational technology to problems in the financial services industry. The goals of financial engineering research are to develop empirically realistic stochastic models describing dynamics of financial risk variables, such as asset prices, foreign exchange rates, and interest rates, and to develop analytical, computational and statistical methods and tools to implement the models and employ them to design and evaluate financial products and processes to manage risk and to meet financial goals. This handbook describes the latest developments in this rapidly evolving field in the areas of modeling and pricing financial derivatives, building models of interest rates and credit risk, pricing and hedging in incomplete markets, risk management, and portfolio optimization. Leading researchers in each of these areas provide their perspective on the state of the art in terms of analysis, computation, and practical relevance. The authors describe essential results to date, fundamental methods and tools, as well as new views of the existing literature, opportunities, and challenges for future research.
Handbook of Financial Econometrics
Author: Yacine Ait-Sahalia
Publisher: Elsevier
ISBN: 0080929842
Category : Business & Economics
Languages : en
Pages : 809
Book Description
This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections
Publisher: Elsevier
ISBN: 0080929842
Category : Business & Economics
Languages : en
Pages : 809
Book Description
This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections
Mathematical and Statistical Methods for Actuarial Sciences and Finance
Author: Marco Corazza
Publisher: Springer
ISBN: 3319898248
Category : Business & Economics
Languages : en
Pages : 465
Book Description
The interaction between mathematicians, statisticians and econometricians working in actuarial sciences and finance is producing numerous meaningful scientific results. This volume introduces new ideas, in the form of four-page papers, presented at the international conference Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF), held at Universidad Carlos III de Madrid (Spain), 4th-6th April 2018. The book covers a wide variety of subjects in actuarial science and financial fields, all discussed in the context of the cooperation between the three quantitative approaches. The topics include: actuarial models; analysis of high frequency financial data; behavioural finance; carbon and green finance; credit risk methods and models; dynamic optimization in finance; financial econometrics; forecasting of dynamical actuarial and financial phenomena; fund performance evaluation; insurance portfolio risk analysis; interest rate models; longevity risk; machine learning and soft-computing in finance; management in insurance business; models and methods for financial time series analysis, models for financial derivatives; multivariate techniques for financial markets analysis; optimization in insurance; pricing; probability in actuarial sciences, insurance and finance; real world finance; risk management; solvency analysis; sovereign risk; static and dynamic portfolio selection and management; trading systems. This book is a valuable resource for academics, PhD students, practitioners, professionals and researchers, and is also of interest to other readers with quantitative background knowledge.
Publisher: Springer
ISBN: 3319898248
Category : Business & Economics
Languages : en
Pages : 465
Book Description
The interaction between mathematicians, statisticians and econometricians working in actuarial sciences and finance is producing numerous meaningful scientific results. This volume introduces new ideas, in the form of four-page papers, presented at the international conference Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF), held at Universidad Carlos III de Madrid (Spain), 4th-6th April 2018. The book covers a wide variety of subjects in actuarial science and financial fields, all discussed in the context of the cooperation between the three quantitative approaches. The topics include: actuarial models; analysis of high frequency financial data; behavioural finance; carbon and green finance; credit risk methods and models; dynamic optimization in finance; financial econometrics; forecasting of dynamical actuarial and financial phenomena; fund performance evaluation; insurance portfolio risk analysis; interest rate models; longevity risk; machine learning and soft-computing in finance; management in insurance business; models and methods for financial time series analysis, models for financial derivatives; multivariate techniques for financial markets analysis; optimization in insurance; pricing; probability in actuarial sciences, insurance and finance; real world finance; risk management; solvency analysis; sovereign risk; static and dynamic portfolio selection and management; trading systems. This book is a valuable resource for academics, PhD students, practitioners, professionals and researchers, and is also of interest to other readers with quantitative background knowledge.
Handbook of Quantitative Finance and Risk Management
Author: Cheng-Few Lee
Publisher: Springer Science & Business Media
ISBN: 0387771174
Category : Business & Economics
Languages : en
Pages : 1700
Book Description
Quantitative finance is a combination of economics, accounting, statistics, econometrics, mathematics, stochastic process, and computer science and technology. Increasingly, the tools of financial analysis are being applied to assess, monitor, and mitigate risk, especially in the context of globalization, market volatility, and economic crisis. This two-volume handbook, comprised of over 100 chapters, is the most comprehensive resource in the field to date, integrating the most current theory, methodology, policy, and practical applications. Showcasing contributions from an international array of experts, the Handbook of Quantitative Finance and Risk Management is unparalleled in the breadth and depth of its coverage. Volume 1 presents an overview of quantitative finance and risk management research, covering the essential theories, policies, and empirical methodologies used in the field. Chapters provide in-depth discussion of portfolio theory and investment analysis. Volume 2 covers options and option pricing theory and risk management. Volume 3 presents a wide variety of models and analytical tools. Throughout, the handbook offers illustrative case examples, worked equations, and extensive references; additional features include chapter abstracts, keywords, and author and subject indices. From "arbitrage" to "yield spreads," the Handbook of Quantitative Finance and Risk Management will serve as an essential resource for academics, educators, students, policymakers, and practitioners.
Publisher: Springer Science & Business Media
ISBN: 0387771174
Category : Business & Economics
Languages : en
Pages : 1700
Book Description
Quantitative finance is a combination of economics, accounting, statistics, econometrics, mathematics, stochastic process, and computer science and technology. Increasingly, the tools of financial analysis are being applied to assess, monitor, and mitigate risk, especially in the context of globalization, market volatility, and economic crisis. This two-volume handbook, comprised of over 100 chapters, is the most comprehensive resource in the field to date, integrating the most current theory, methodology, policy, and practical applications. Showcasing contributions from an international array of experts, the Handbook of Quantitative Finance and Risk Management is unparalleled in the breadth and depth of its coverage. Volume 1 presents an overview of quantitative finance and risk management research, covering the essential theories, policies, and empirical methodologies used in the field. Chapters provide in-depth discussion of portfolio theory and investment analysis. Volume 2 covers options and option pricing theory and risk management. Volume 3 presents a wide variety of models and analytical tools. Throughout, the handbook offers illustrative case examples, worked equations, and extensive references; additional features include chapter abstracts, keywords, and author and subject indices. From "arbitrage" to "yield spreads," the Handbook of Quantitative Finance and Risk Management will serve as an essential resource for academics, educators, students, policymakers, and practitioners.
Mathematical Control Theory and Finance
Author: Andrey Sarychev
Publisher: Springer Science & Business Media
ISBN: 354069532X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Control theory provides a large set of theoretical and computational tools with applications in a wide range of ?elds, running from ”pure” branches of mathematics, like geometry, to more applied areas where the objective is to ?nd solutions to ”real life” problems, as is the case in robotics, control of industrial processes or ?nance. The ”high tech” character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the ?nancial analyst to possess a high level of mathematical skills. C- versely, the complex challenges posed by the problems and models relevant to ?nance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical ?nance. Up to now, other branches of control theory have found comparatively less application in ?n- cial problems. To some extent, deterministic and stochastic control theories developed as di?erent branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these ?elds has intensi?ed. Some concepts from stochastic calculus (e.g., rough paths) havedrawntheattentionofthedeterministiccontroltheorycommunity.Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic c- trol.
Publisher: Springer Science & Business Media
ISBN: 354069532X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Control theory provides a large set of theoretical and computational tools with applications in a wide range of ?elds, running from ”pure” branches of mathematics, like geometry, to more applied areas where the objective is to ?nd solutions to ”real life” problems, as is the case in robotics, control of industrial processes or ?nance. The ”high tech” character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the ?nancial analyst to possess a high level of mathematical skills. C- versely, the complex challenges posed by the problems and models relevant to ?nance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical ?nance. Up to now, other branches of control theory have found comparatively less application in ?n- cial problems. To some extent, deterministic and stochastic control theories developed as di?erent branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these ?elds has intensi?ed. Some concepts from stochastic calculus (e.g., rough paths) havedrawntheattentionofthedeterministiccontroltheorycommunity.Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic c- trol.