Lectures on Polytopes

Lectures on Polytopes PDF Author: Günter M. Ziegler
Publisher: Springer
ISBN: 9780387943657
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.

Lectures on Polytopes

Lectures on Polytopes PDF Author: Günter M. Ziegler
Publisher: Springer
ISBN: 9780387943657
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.

Lectures on Polytopes

Lectures on Polytopes PDF Author: Günter M. Ziegler
Publisher: Springer Science & Business Media
ISBN: 038794365X
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.

An Introduction to Convex Polytopes

An Introduction to Convex Polytopes PDF Author: Arne Brondsted
Publisher: Springer Science & Business Media
ISBN: 1461211484
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.

Convex Polytopes

Convex Polytopes PDF Author: Branko Grünbaum
Publisher: Springer Science & Business Media
ISBN: 1461300193
Category : Mathematics
Languages : en
Pages : 561

Get Book Here

Book Description
"The original edition [...] inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." --Peter McMullen, University College London

Regular Polytopes

Regular Polytopes PDF Author: H. S. M. Coxeter
Publisher: Courier Corporation
ISBN: 0486141586
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
Foremost book available on polytopes, incorporating ancient Greek and most modern work. Discusses polygons, polyhedrons, and multi-dimensional polytopes. Definitions of symbols. Includes 8 tables plus many diagrams and examples. 1963 edition.

Realization Spaces of Polytopes

Realization Spaces of Polytopes PDF Author: Jürgen Richter-Gebert
Publisher: Springer
ISBN: 3540496408
Category : Mathematics
Languages : en
Pages : 195

Get Book Here

Book Description
The book collects results about realization spaces of polytopes. It gives a presentation of the author's "Universality Theorem for 4-polytopes". It is a comprehensive survey of the important results that have been obtained in that direction. The approaches chosen are direct and very geometric in nature. The book is addressed to researchers and to graduate students. The former will find a comprehensive source for the above mentioned results. The latter will find a readable introduction to the field. The reader is assumed to be familiar with basic concepts of linear algebra.

The Geometry of Higher-Dimensional Polytopes

The Geometry of Higher-Dimensional Polytopes PDF Author: Zhizhin, Gennadiy Vladimirovich
Publisher: IGI Global
ISBN: 1522569693
Category : Technology & Engineering
Languages : en
Pages : 301

Get Book Here

Book Description
The majority of the chemical elements form chemical compounds with molecules of higher dimension (i.e., substantially exceeding three). This fact is very important for the analysis of molecular interactions in various areas: nanomedicine, nanotoxicology, and quantum biology. The Geometry of Higher-Dimensional Polytopes contains innovative research on the methods and applications of the structures of binary compounds. It explores the study of geometry polytopes from a higher-dimensional perspective, taking into account the features of polytopes that are models of chemical compounds. While highlighting topics including chemical compounds, symmetry transformation, and DNA structures, this book is ideally designed for researchers, academicians, and students seeking current research on dimensions present in binary compounds.

Abstract Regular Polytopes

Abstract Regular Polytopes PDF Author: Peter McMullen
Publisher: Cambridge University Press
ISBN: 9780521814966
Category : Mathematics
Languages : en
Pages : 580

Get Book Here

Book Description
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.

Polytopes - Combinations and Computation

Polytopes - Combinations and Computation PDF Author: Gil Kalai
Publisher: Birkhäuser
ISBN: 3034884389
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
Questions that arose from linear programming and combinatorial optimization have been a driving force for modern polytope theory, such as the diameter questions motivated by the desire to understand the complexity of the simplex algorithm, or the need to study facets for use in cutting plane procedures. In addition, algorithms now provide the means to computationally study polytopes, to compute their parameters such as flag vectors, graphs and volumes, and to construct examples of large complexity. The papers of this volume thus display a wide panorama of connections of polytope theory with other fields. Areas such as discrete and computational geometry, linear and combinatorial optimization, and scientific computing have contributed a combination of questions, ideas, results, algorithms and, finally, computer programs.

Polytopes, Rings, and K-Theory

Polytopes, Rings, and K-Theory PDF Author: Winfried Bruns
Publisher: Springer Science & Business Media
ISBN: 0387763562
Category : Mathematics
Languages : en
Pages : 461

Get Book Here

Book Description
This book examines interactions of polyhedral discrete geometry and algebra. What makes this book unique is the presentation of several central results in all three areas of the exposition - from discrete geometry, to commutative algebra, and K-theory.