Solving Polynomial Equations

Solving Polynomial Equations PDF Author: Alicia Dickenstein
Publisher: Springer Science & Business Media
ISBN: 3540243267
Category : Computers
Languages : en
Pages : 433

Get Book Here

Book Description
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.

Solving Polynomial Equations

Solving Polynomial Equations PDF Author: Alicia Dickenstein
Publisher: Springer Science & Business Media
ISBN: 3540243267
Category : Computers
Languages : en
Pages : 433

Get Book Here

Book Description
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.

Solving Systems of Polynomial Equations

Solving Systems of Polynomial Equations PDF Author: Bernd Sturmfels
Publisher: American Mathematical Soc.
ISBN: 0821832514
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.

Intermediate Algebra 2e

Intermediate Algebra 2e PDF Author: Lynn Marecek
Publisher:
ISBN: 9781951693848
Category :
Languages : en
Pages :

Get Book Here

Book Description


Numerical Polynomial Algebra

Numerical Polynomial Algebra PDF Author: Hans J. Stetter
Publisher: SIAM
ISBN: 0898715571
Category : Mathematics
Languages : en
Pages : 475

Get Book Here

Book Description
This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.

Polynomials

Polynomials PDF Author: Cheon Seoung Ryoo
Publisher: BoD – Books on Demand
ISBN: 183880269X
Category : Mathematics
Languages : en
Pages : 174

Get Book Here

Book Description
Polynomials are well known for their ability to improve their properties and for their applicability in the interdisciplinary fields of engineering and science. Many problems arising in engineering and physics are mathematically constructed by differential equations. Most of these problems can only be solved using special polynomials. Special polynomials and orthonormal polynomials provide a new way to analyze solutions of various equations often encountered in engineering and physical problems. In particular, special polynomials play a fundamental and important role in mathematics and applied mathematics. Until now, research on polynomials has been done in mathematics and applied mathematics only. This book is based on recent results in all areas related to polynomials. Divided into sections on theory and application, this book provides an overview of the current research in the field of polynomials. Topics include cyclotomic and Littlewood polynomials; Descartes' rule of signs; obtaining explicit formulas and identities for polynomials defined by generating functions; polynomials with symmetric zeros; numerical investigation on the structure of the zeros of the q-tangent polynomials; investigation and synthesis of robust polynomials in uncertainty on the basis of the root locus theory; pricing basket options by polynomial approximations; and orthogonal expansion in time domain method for solving Maxwell's equations using paralleling-in-order scheme.

A Polynomial Approach to Linear Algebra

A Polynomial Approach to Linear Algebra PDF Author: Paul A. Fuhrmann
Publisher: Springer Science & Business Media
ISBN: 1441987347
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. Finally there is a chapter on Hankel norm approximation for the case of scalar rational functions which allows the reader to access ideas and results on the frontier of current research.

Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini PDF Author: Daniel J. Bates
Publisher: SIAM
ISBN: 1611972698
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.

Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials

Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials PDF Author: Alouf Jirari
Publisher: American Mathematical Soc.
ISBN: 082180359X
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
This memoir presents machinery for analyzing many discrete physical situations, and should be of interest to physicists, engineers, and mathematicians. We develop a theory for regular and singular Sturm-Liouville boundary value problems for difference equations, generalizing many of the known results for differential equations. We discuss the self-adjointness of these problems as well as their abstract spectral resolution in the appropriate [italic capital]L2 setting, and give necessary and sufficient conditions for a second-order difference operator to be self-adjoint and have orthogonal polynomials as eigenfunctions.

Polynomial Approximation of Differential Equations

Polynomial Approximation of Differential Equations PDF Author: Daniele Funaro
Publisher: Springer Science & Business Media
ISBN: 3540467831
Category : Science
Languages : en
Pages : 315

Get Book Here

Book Description
This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.

Polynomials and Polynomial Inequalities

Polynomials and Polynomial Inequalities PDF Author: Peter Borwein
Publisher: Springer Science & Business Media
ISBN: 9780387945095
Category : Mathematics
Languages : en
Pages : 508

Get Book Here

Book Description
After an introduction to the geometry of polynomials and a discussion of refinements of the Fundamental Theorem of Algebra, the book turns to a consideration of various special polynomials. Chebyshev and Descartes systems are then introduced, and Müntz systems and rational systems are examined in detail. Subsequent chapters discuss denseness questions and the inequalities satisfied by polynomials and rational functions. Appendices on algorithms and computational concerns, on the interpolation theorem, and on orthogonality and irrationality round off the text. The book is self-contained and assumes at most a senior-undergraduate familiarity with real and complex analysis.