Author: Daniele Funaro
Publisher: Springer Science & Business Media
ISBN: 3540467831
Category : Science
Languages : en
Pages : 315
Book Description
This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.
Polynomial Approximation of Differential Equations
Author: Daniele Funaro
Publisher: Springer Science & Business Media
ISBN: 3540467831
Category : Science
Languages : en
Pages : 315
Book Description
This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.
Publisher: Springer Science & Business Media
ISBN: 3540467831
Category : Science
Languages : en
Pages : 315
Book Description
This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.
Solution of Differential Equation Models by Polynomial Approximation
Author: John Villadsen
Publisher: Prentice Hall
ISBN: 9780138222055
Category : Approximation theory
Languages : en
Pages : 446
Book Description
Publisher: Prentice Hall
ISBN: 9780138222055
Category : Approximation theory
Languages : en
Pages : 446
Book Description
Numerical Approximation of Partial Differential Equations
Author: Alfio Quarteroni
Publisher: Springer Science & Business Media
ISBN: 3540852689
Category : Mathematics
Languages : en
Pages : 551
Book Description
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).
Publisher: Springer Science & Business Media
ISBN: 3540852689
Category : Mathematics
Languages : en
Pages : 551
Book Description
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).
Interpolation and Approximation by Polynomials
Author: George M. Phillips
Publisher: Springer Science & Business Media
ISBN: 0387216820
Category : Mathematics
Languages : en
Pages : 325
Book Description
In addition to coverage of univariate interpolation and approximation, the text includes material on multivariate interpolation and multivariate numerical integration, a generalization of the Bernstein polynomials that has not previously appeared in book form, and a greater coverage of Peano kernel theory than is found in most textbooks. There are many worked examples and each section ends with a number of carefully selected problems that extend the student's understanding of the text. The author is well known for his clarity of writing and his many contributions as a researcher in approximation theory.
Publisher: Springer Science & Business Media
ISBN: 0387216820
Category : Mathematics
Languages : en
Pages : 325
Book Description
In addition to coverage of univariate interpolation and approximation, the text includes material on multivariate interpolation and multivariate numerical integration, a generalization of the Bernstein polynomials that has not previously appeared in book form, and a greater coverage of Peano kernel theory than is found in most textbooks. There are many worked examples and each section ends with a number of carefully selected problems that extend the student's understanding of the text. The author is well known for his clarity of writing and his many contributions as a researcher in approximation theory.
Sparse Polynomial Approximation of High-Dimensional Functions
Author: Ben Adcock
Publisher: Society for Industrial and Applied Mathematics (SIAM)
ISBN: 9781611976878
Category : Approximation theory
Languages : en
Pages : 0
Book Description
"This is a book about polynomial approximation in high dimensions"--
Publisher: Society for Industrial and Applied Mathematics (SIAM)
ISBN: 9781611976878
Category : Approximation theory
Languages : en
Pages : 0
Book Description
"This is a book about polynomial approximation in high dimensions"--
Approximation of Continuously Differentiable Functions
Author: J.G. Llavona
Publisher: Elsevier
ISBN: 0080872417
Category : Mathematics
Languages : en
Pages : 257
Book Description
This self-contained book brings together the important results of a rapidly growing area.As a starting point it presents the classic results of the theory. The book covers such results as: the extension of Wells' theorem and Aron's theorem for the fine topology of order m; extension of Bernstein's and Weierstrass' theorems for infinite dimensional Banach spaces; extension of Nachbin's and Whitney's theorem for infinite dimensional Banach spaces; automatic continuity of homomorphisms in algebras of continuously differentiable functions, etc.
Publisher: Elsevier
ISBN: 0080872417
Category : Mathematics
Languages : en
Pages : 257
Book Description
This self-contained book brings together the important results of a rapidly growing area.As a starting point it presents the classic results of the theory. The book covers such results as: the extension of Wells' theorem and Aron's theorem for the fine topology of order m; extension of Bernstein's and Weierstrass' theorems for infinite dimensional Banach spaces; extension of Nachbin's and Whitney's theorem for infinite dimensional Banach spaces; automatic continuity of homomorphisms in algebras of continuously differentiable functions, etc.
Numerical Approximation of Partial Differential Equations
Author: E.L. Ortiz
Publisher: Elsevier
ISBN: 0080872441
Category : Computers
Languages : en
Pages : 447
Book Description
This selection of papers is concerned with problems arising in the numerical solution of differential equations, with an emphasis on partial differential equations. There is a balance between theoretical studies of approximation processes, the analysis of specific numerical techniques and the discussion of their application to concrete problems relevant to engineering and science. Special consideration has been given to innovative numerical techniques and to the treatment of three-dimensional and singular problems. These topics are discussed in several of the invited papers.The contributed papers are divided into five parts: techniques of approximation theory which are basic to the numerical treatment of differential equations; numerical techniques based on discrete processes; innovative methods based on polynomial and rational approximation; variational inequalities, conformal transformation and asymptotic techniques; and applications of differential equations to problems in science and engineering.
Publisher: Elsevier
ISBN: 0080872441
Category : Computers
Languages : en
Pages : 447
Book Description
This selection of papers is concerned with problems arising in the numerical solution of differential equations, with an emphasis on partial differential equations. There is a balance between theoretical studies of approximation processes, the analysis of specific numerical techniques and the discussion of their application to concrete problems relevant to engineering and science. Special consideration has been given to innovative numerical techniques and to the treatment of three-dimensional and singular problems. These topics are discussed in several of the invited papers.The contributed papers are divided into five parts: techniques of approximation theory which are basic to the numerical treatment of differential equations; numerical techniques based on discrete processes; innovative methods based on polynomial and rational approximation; variational inequalities, conformal transformation and asymptotic techniques; and applications of differential equations to problems in science and engineering.
Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Computational Differential Equations
Author: Kenneth Eriksson
Publisher: Cambridge University Press
ISBN: 9780521567381
Category : Mathematics
Languages : en
Pages : 558
Book Description
This textbook on computational mathematics is based on a fusion of mathematical analysis, numerical computation and applications.
Publisher: Cambridge University Press
ISBN: 9780521567381
Category : Mathematics
Languages : en
Pages : 558
Book Description
This textbook on computational mathematics is based on a fusion of mathematical analysis, numerical computation and applications.