Author: Michael A. R. Meier
Publisher: Springer Science & Business Media
ISBN: 3642001696
Category : Technology & Engineering
Languages : en
Pages : 162
Book Description
This is truly an exciting time to be in the ?eld of polymer science. Advances in polymerization methods are providing polymer scientists with the ability to specify and control polymer composition, structure, architecture, and molecular weight to a degree that was not possible just a decade ago. This, in turn, is resulting in many novel application possibilities of polymers ranging from drug delivery systems and nanolithographyto stimuli-responsivematerials and many others. In addition,many of the application areas of polymers – such as coatings, adhesives, thermoplastics, composites, and personal care – are also taking advantage of the ability to design polymersduringtheir developmentefforts. Not to forget,manyof these applications of polymers involve mixing polymers with solvents, catalysts, colorants, and many other ingredients to prepare a formulated product. However, the tuning of polymer composition and structure as well as polymer formulations to optimize the ?nal performance properties can be challenging, - pecially since in many cases several interacting variables need to be optimized simultaneously. This is where the methodologies and techniques of combinatorial and high-throughput experimentation to synthesize and characterize polymer - braries can be an invaluable approach. Simply put, a polymer library is a collection of multiple polymer samples having a systematic variation in one or more variables related to composition, structure, or process. Various methods and strategies have been explored to ef?ciently prepare a large number of polymer samples and also to screen these samples for key properties of interest.
Polymer Libraries
Author: Michael A. R. Meier
Publisher: Springer Science & Business Media
ISBN: 3642001696
Category : Technology & Engineering
Languages : en
Pages : 162
Book Description
This is truly an exciting time to be in the ?eld of polymer science. Advances in polymerization methods are providing polymer scientists with the ability to specify and control polymer composition, structure, architecture, and molecular weight to a degree that was not possible just a decade ago. This, in turn, is resulting in many novel application possibilities of polymers ranging from drug delivery systems and nanolithographyto stimuli-responsivematerials and many others. In addition,many of the application areas of polymers – such as coatings, adhesives, thermoplastics, composites, and personal care – are also taking advantage of the ability to design polymersduringtheir developmentefforts. Not to forget,manyof these applications of polymers involve mixing polymers with solvents, catalysts, colorants, and many other ingredients to prepare a formulated product. However, the tuning of polymer composition and structure as well as polymer formulations to optimize the ?nal performance properties can be challenging, - pecially since in many cases several interacting variables need to be optimized simultaneously. This is where the methodologies and techniques of combinatorial and high-throughput experimentation to synthesize and characterize polymer - braries can be an invaluable approach. Simply put, a polymer library is a collection of multiple polymer samples having a systematic variation in one or more variables related to composition, structure, or process. Various methods and strategies have been explored to ef?ciently prepare a large number of polymer samples and also to screen these samples for key properties of interest.
Publisher: Springer Science & Business Media
ISBN: 3642001696
Category : Technology & Engineering
Languages : en
Pages : 162
Book Description
This is truly an exciting time to be in the ?eld of polymer science. Advances in polymerization methods are providing polymer scientists with the ability to specify and control polymer composition, structure, architecture, and molecular weight to a degree that was not possible just a decade ago. This, in turn, is resulting in many novel application possibilities of polymers ranging from drug delivery systems and nanolithographyto stimuli-responsivematerials and many others. In addition,many of the application areas of polymers – such as coatings, adhesives, thermoplastics, composites, and personal care – are also taking advantage of the ability to design polymersduringtheir developmentefforts. Not to forget,manyof these applications of polymers involve mixing polymers with solvents, catalysts, colorants, and many other ingredients to prepare a formulated product. However, the tuning of polymer composition and structure as well as polymer formulations to optimize the ?nal performance properties can be challenging, - pecially since in many cases several interacting variables need to be optimized simultaneously. This is where the methodologies and techniques of combinatorial and high-throughput experimentation to synthesize and characterize polymer - braries can be an invaluable approach. Simply put, a polymer library is a collection of multiple polymer samples having a systematic variation in one or more variables related to composition, structure, or process. Various methods and strategies have been explored to ef?ciently prepare a large number of polymer samples and also to screen these samples for key properties of interest.
Mechanics of Solid Polymers
Author: Jorgen S Bergstrom
Publisher: William Andrew
ISBN: 0323322964
Category : Technology & Engineering
Languages : en
Pages : 524
Book Description
Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mechanics of Solid Polymers provides a modern view of how solid polymers behave, how they can be experimentally characterized, and how to predict their behavior in different load environments. Reflecting the significant progress made in the understanding of polymer behaviour over the last two decades, this book will discuss recent developments and compare them to classical theories. The book shows how best to make use of commercially available finite element software to solve polymer mechanics problems, introducing readers to the current state of the art in predicting failure using a combination of experiment and computational techniques. Case studies and example Matlab code are also included. As industry and academia are increasingly reliant on advanced computational mechanics software to implement sophisticated constitutive models – and authoritative information is hard to find in one place - this book provides engineers with what they need to know to make best use of the technology available. - Helps professionals deploy the latest experimental polymer testing methods to assess suitability for applications - Discusses material models for different polymer types - Shows how to best make use of available finite element software to model polymer behaviour, and includes case studies and example code to help engineers and researchers apply it to their work
Publisher: William Andrew
ISBN: 0323322964
Category : Technology & Engineering
Languages : en
Pages : 524
Book Description
Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mechanics of Solid Polymers provides a modern view of how solid polymers behave, how they can be experimentally characterized, and how to predict their behavior in different load environments. Reflecting the significant progress made in the understanding of polymer behaviour over the last two decades, this book will discuss recent developments and compare them to classical theories. The book shows how best to make use of commercially available finite element software to solve polymer mechanics problems, introducing readers to the current state of the art in predicting failure using a combination of experiment and computational techniques. Case studies and example Matlab code are also included. As industry and academia are increasingly reliant on advanced computational mechanics software to implement sophisticated constitutive models – and authoritative information is hard to find in one place - this book provides engineers with what they need to know to make best use of the technology available. - Helps professionals deploy the latest experimental polymer testing methods to assess suitability for applications - Discusses material models for different polymer types - Shows how to best make use of available finite element software to model polymer behaviour, and includes case studies and example code to help engineers and researchers apply it to their work
Manufacturing and Novel Applications of Multilayer Polymer Films
Author: Deepak Langhe
Publisher: William Andrew
ISBN: 0323374662
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
Manufacturing and Novel Applications of Multilayer Polymer Films discusses the advancements in multilayer technology, including its capability to produce hundreds of layers in a single film by a melt coextrusion process. These engineered films can have significantly enhanced performance properties, allowing films to be made thinner, stronger, and with better sealing properties. As recent developments in feedblocks and materials have opened up a range of new possibilities, this book discusses different feedblocks, and viscosity and material considerations. It is the first comprehensive summary of the latest technology in multilayer film processing and related applications, and is written from a practical perspective, translating research into commercial production and real world products. The book provides fundamental knowledge on microlayer coextrusion processing technology, how to fabricate such structures, structure and properties of such microlayers, and potential applications, thus helping research scientists and engineers develop products which not only fulfill their primary function, but can also be manufactured reliably, safely, and economically. - Provides a fundamental knowledge of microlayer coextrusion processing, including how to fabricate microlayer structures, the properties of microlayers, and potential applications, including optics, polymer film capacitors, and semiconductors - Includes an in-depth analysis of all technologies used for producing multilayered films and structures by coextrusion processing - Thoroughly assesses potential future trends in multilayer coextrusion technology, thus enabling engineers and scientists to stay ahead of the curve in this rapidly advancing area
Publisher: William Andrew
ISBN: 0323374662
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
Manufacturing and Novel Applications of Multilayer Polymer Films discusses the advancements in multilayer technology, including its capability to produce hundreds of layers in a single film by a melt coextrusion process. These engineered films can have significantly enhanced performance properties, allowing films to be made thinner, stronger, and with better sealing properties. As recent developments in feedblocks and materials have opened up a range of new possibilities, this book discusses different feedblocks, and viscosity and material considerations. It is the first comprehensive summary of the latest technology in multilayer film processing and related applications, and is written from a practical perspective, translating research into commercial production and real world products. The book provides fundamental knowledge on microlayer coextrusion processing technology, how to fabricate such structures, structure and properties of such microlayers, and potential applications, thus helping research scientists and engineers develop products which not only fulfill their primary function, but can also be manufactured reliably, safely, and economically. - Provides a fundamental knowledge of microlayer coextrusion processing, including how to fabricate microlayer structures, the properties of microlayers, and potential applications, including optics, polymer film capacitors, and semiconductors - Includes an in-depth analysis of all technologies used for producing multilayered films and structures by coextrusion processing - Thoroughly assesses potential future trends in multilayer coextrusion technology, thus enabling engineers and scientists to stay ahead of the curve in this rapidly advancing area
Fractography in Failure Analysis of Polymers
Author: Michael D. Hayes
Publisher: Elsevier
ISBN: 0443190046
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
Fractography in Failure Analysis of Polymers, Second Edition, provides a practical guide to the science of fractography and its application in the failure analysis of plastic components. In addition to a brief background on the theory of fractography, the authors discuss the various fractographic tools and techniques used to identify key fracture characteristics. The Second Edition includes additional material related to polymer life prediction testing and analysis. Case studies have been expanded, including a wide range of polymer types, new technologies, applications, and failure modes, as well as best practice guidelines enabling engineers to apply these lessons to their own work. Detailed images and their appropriate context are presented for reference in failure investigations. This text is vital for engineers who must determine the root causes of failure when it occurs, helping them further study the ramifications of product liability claims, environmental concerns, and brand image. This is also a valuable resource for all plastics professionals, including manufacturers, product designers, and consultants, forensic investigators, as well as educators in materials science. - Presents comprehensive coverage of applied fractography, enabling improved reliability and longevity of plastic parts and products - Includes case studies that demonstrate material selection decisions and how to reduce failure rates - Provides best practices on how to analyze the cause of material failures, along with guidelines on improving design and manufacturing decisions
Publisher: Elsevier
ISBN: 0443190046
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
Fractography in Failure Analysis of Polymers, Second Edition, provides a practical guide to the science of fractography and its application in the failure analysis of plastic components. In addition to a brief background on the theory of fractography, the authors discuss the various fractographic tools and techniques used to identify key fracture characteristics. The Second Edition includes additional material related to polymer life prediction testing and analysis. Case studies have been expanded, including a wide range of polymer types, new technologies, applications, and failure modes, as well as best practice guidelines enabling engineers to apply these lessons to their own work. Detailed images and their appropriate context are presented for reference in failure investigations. This text is vital for engineers who must determine the root causes of failure when it occurs, helping them further study the ramifications of product liability claims, environmental concerns, and brand image. This is also a valuable resource for all plastics professionals, including manufacturers, product designers, and consultants, forensic investigators, as well as educators in materials science. - Presents comprehensive coverage of applied fractography, enabling improved reliability and longevity of plastic parts and products - Includes case studies that demonstrate material selection decisions and how to reduce failure rates - Provides best practices on how to analyze the cause of material failures, along with guidelines on improving design and manufacturing decisions
Printing on Polymers
Author: Joanna Izdebska-Podsiadły
Publisher: William Andrew
ISBN: 0323375006
Category : Technology & Engineering
Languages : en
Pages : 446
Book Description
Printing on Polymers: Fundamentals and Applications is the first authoritative reference covering the most important developments in the field of printing on polymers, their composites, nanocomposites, and gels. The book examines the current state-of-the-art and new challenges in the formulation of inks, surface activation of polymer surfaces, and various methods of printing. The book equips engineers and materials scientists with the tools required to select the correct method, assess the quality of the result, reduce costs, and keep up-to-date with regulations and environmental concerns. Choosing the correct way of decorating a particular polymer is an important part of the production process. Although printing on polymeric substrates can have desired positive effects, there can be problems associated with various decorating techniques. Physical, chemical, and thermal interactions can cause problems, such as cracking, peeling, or dulling. Safety, environmental sustainability, and cost are also significant factors which need to be considered. With contributions from leading researchers from industry, academia, and private research institutions, this book serves as a one-stop reference for this field—from print ink manufacture to polymer surface modification and characterization; and from printing methods to applications and end-of-life issues. - Enables engineers to select the correct decoration method for each material and application, assess print quality, and reduce costs - Increases familiarity with the terminology, tests, processes, techniques, and regulations of printing on plastic, which reduces the risk of adverse reactions, such as cracking, peeling, or dulling of the print - Addresses the issues of environmental impact and cost when printing on polymeric substrates - Features contributions from leading researchers from industry, academia, and private research institutions
Publisher: William Andrew
ISBN: 0323375006
Category : Technology & Engineering
Languages : en
Pages : 446
Book Description
Printing on Polymers: Fundamentals and Applications is the first authoritative reference covering the most important developments in the field of printing on polymers, their composites, nanocomposites, and gels. The book examines the current state-of-the-art and new challenges in the formulation of inks, surface activation of polymer surfaces, and various methods of printing. The book equips engineers and materials scientists with the tools required to select the correct method, assess the quality of the result, reduce costs, and keep up-to-date with regulations and environmental concerns. Choosing the correct way of decorating a particular polymer is an important part of the production process. Although printing on polymeric substrates can have desired positive effects, there can be problems associated with various decorating techniques. Physical, chemical, and thermal interactions can cause problems, such as cracking, peeling, or dulling. Safety, environmental sustainability, and cost are also significant factors which need to be considered. With contributions from leading researchers from industry, academia, and private research institutions, this book serves as a one-stop reference for this field—from print ink manufacture to polymer surface modification and characterization; and from printing methods to applications and end-of-life issues. - Enables engineers to select the correct decoration method for each material and application, assess print quality, and reduce costs - Increases familiarity with the terminology, tests, processes, techniques, and regulations of printing on plastic, which reduces the risk of adverse reactions, such as cracking, peeling, or dulling of the print - Addresses the issues of environmental impact and cost when printing on polymeric substrates - Features contributions from leading researchers from industry, academia, and private research institutions
Encyclopedia of Polymer Science and Technology, Concise
Author: Herman F. Mark
Publisher: John Wiley & Sons
ISBN: 0470073691
Category : Science
Languages : en
Pages : 1490
Book Description
The compact, affordable reference, revised and updated The Encyclopedia of Polymer Science and Technology, Concise Third Edition provides the key information from the complete, twelve-volume Mark's Encyclopedia in an affordable, condensed format. Completely revised and updated, this user-friendly desk reference offers quick access to all areas of polymer science, including important advances in nanotechnology, imaging and analytical techniques, controlled polymer architecture, biomimetics, and more, all in one volume. Like the twelve-volume full edition, the Encyclopedia of Polymer Science and Technology, Concise Third Edition provides both SI and common units, carefully selected key references for each article, and hundreds of tables, charts, figures, and graphs.
Publisher: John Wiley & Sons
ISBN: 0470073691
Category : Science
Languages : en
Pages : 1490
Book Description
The compact, affordable reference, revised and updated The Encyclopedia of Polymer Science and Technology, Concise Third Edition provides the key information from the complete, twelve-volume Mark's Encyclopedia in an affordable, condensed format. Completely revised and updated, this user-friendly desk reference offers quick access to all areas of polymer science, including important advances in nanotechnology, imaging and analytical techniques, controlled polymer architecture, biomimetics, and more, all in one volume. Like the twelve-volume full edition, the Encyclopedia of Polymer Science and Technology, Concise Third Edition provides both SI and common units, carefully selected key references for each article, and hundreds of tables, charts, figures, and graphs.
The Encyclopedia of Polymer Clay Techniques
Author: Sue Heaser
Publisher: Running Press
ISBN: 9780762430871
Category : Crafts & Hobbies
Languages : en
Pages : 0
Book Description
The latest in our best-selling Encyclopedia of Art series focuses on one of the most popular and versatile mediums available to crafters. This comprehensive guide offers directions on making decorative boxes, mosaics, and miniature models, as well as beads, buttons, and jewelry. Large, clear photographs demonstrate over 50 techniques, including basic skills such as rolling, color mixing, marbling, and baking; progressing to more challenging methods of shaping, molding, and sculpting clay. A 16-page gallery of work by renowned polymer clay artists demonstrates what can be achieved and provides crafters with inspiration.
Publisher: Running Press
ISBN: 9780762430871
Category : Crafts & Hobbies
Languages : en
Pages : 0
Book Description
The latest in our best-selling Encyclopedia of Art series focuses on one of the most popular and versatile mediums available to crafters. This comprehensive guide offers directions on making decorative boxes, mosaics, and miniature models, as well as beads, buttons, and jewelry. Large, clear photographs demonstrate over 50 techniques, including basic skills such as rolling, color mixing, marbling, and baking; progressing to more challenging methods of shaping, molding, and sculpting clay. A 16-page gallery of work by renowned polymer clay artists demonstrates what can be achieved and provides crafters with inspiration.
Combinatorial Materials Science
Author: Marc D. Porter
Publisher: John Wiley & Sons
ISBN: 0470140461
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
Combinatorial Materials Science describes new developments and research results in catalysts, biomaterials, and nanomaterials, together with informatics approaches to the analysis of Combinatorial Science (CombiSci) data. CombiSci has been used extensively in the pharmaceutical industry, but there is enormous potential in its application to materials design and characterization. Addressing advances and applications in both fields, Combinatorial Materials Science: Integrates the scientific fundamentals and interdisciplinary underpinnings required to develop and apply CombiSci concepts Discusses the development and use of CombiSci for the systematic and accelerated investigation of new phenomena and of the complex structure-function interplay in materials Covers the development of new library design strategies for materials processing and for high-throughput tools for rapid sampling Uses a unique, unified approach of applying combinatorial methods to unravel the non-linear structure-function relationships in diverse materials (both hard and soft), together with advances in informatics With chapters written by leading researchers in their specialty areas, this authoritative guide is a must-have resource for scientists and engineers in materials science research, biochemists, chemists, immunologists, cell biologists, polymer scientists, chemical and mechanical engineers, statisticians, and computer scientists. It is also a great text for graduate-level courses in materials science/engineering, polymer science, chemical engineering, and chemistry.
Publisher: John Wiley & Sons
ISBN: 0470140461
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
Combinatorial Materials Science describes new developments and research results in catalysts, biomaterials, and nanomaterials, together with informatics approaches to the analysis of Combinatorial Science (CombiSci) data. CombiSci has been used extensively in the pharmaceutical industry, but there is enormous potential in its application to materials design and characterization. Addressing advances and applications in both fields, Combinatorial Materials Science: Integrates the scientific fundamentals and interdisciplinary underpinnings required to develop and apply CombiSci concepts Discusses the development and use of CombiSci for the systematic and accelerated investigation of new phenomena and of the complex structure-function interplay in materials Covers the development of new library design strategies for materials processing and for high-throughput tools for rapid sampling Uses a unique, unified approach of applying combinatorial methods to unravel the non-linear structure-function relationships in diverse materials (both hard and soft), together with advances in informatics With chapters written by leading researchers in their specialty areas, this authoritative guide is a must-have resource for scientists and engineers in materials science research, biochemists, chemists, immunologists, cell biologists, polymer scientists, chemical and mechanical engineers, statisticians, and computer scientists. It is also a great text for graduate-level courses in materials science/engineering, polymer science, chemical engineering, and chemistry.
Polymer Analysis
Author: Barbara H. Stuart
Publisher: John Wiley & Sons
ISBN: 0470511354
Category : Science
Languages : en
Pages : 302
Book Description
This book introduces the techniques used for the analysis of polymers. It covers the main aspects of polymer science and technology; identification, polymerization, molecular weight, structure, surface properties, degradation and mechanical properties. * Clear explanations of each analytical technique * Describes the application of techniques to the study of polymers * Encourages learning through numerous self-assessment questions and answers * Structured for flexible learning
Publisher: John Wiley & Sons
ISBN: 0470511354
Category : Science
Languages : en
Pages : 302
Book Description
This book introduces the techniques used for the analysis of polymers. It covers the main aspects of polymer science and technology; identification, polymerization, molecular weight, structure, surface properties, degradation and mechanical properties. * Clear explanations of each analytical technique * Describes the application of techniques to the study of polymers * Encourages learning through numerous self-assessment questions and answers * Structured for flexible learning
Shape-Memory Polymer Device Design
Author: David L. Safranski
Publisher: William Andrew
ISBN: 0323378080
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
Shape-Memory Polymer Device Design discusses the latest shape-memory polymers and the ways they have started to transition out of the academic laboratory and into devices and commercial products. Safranski introduces the properties of shape-memory polymers and presents design principles for designing and manufacturing, providing a guide for the R&D engineer/scientist and design engineer to add the shape memory effect of polymers into their design toolbox. This is the first book to focus on applying basic science knowledge to design practical devices, introducing the concept of shape-memory polymers, the history of their use, and the range of current applications. It details the specific design principles for working with shape-memory polymers that don't often apply to mechanically inactive materials and products. Material selection is thoroughly discussed because chemical structure and thermo-mechanical properties are intrinsically linked to shape-memory performance. Further chapters discuss programming the temporary shape and recovery through a variety of activation methods with real world examples. Finally, current devices across a variety of markets are highlighted to show the breadth of possible applications. - Demystifies shape-memory polymers, providing a guide to their properties and design principles - Explores a range of current and emerging applications across sectors, including biomedical, aerospace/automotive, and consumer goods - Places shape-memory polymers in the design toolkit of R&D scientists/engineers and design engineers - Discusses material selection in-depth because chemical structure and thermo-mechanical properties are intrinsically linked to shape-memory performance
Publisher: William Andrew
ISBN: 0323378080
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
Shape-Memory Polymer Device Design discusses the latest shape-memory polymers and the ways they have started to transition out of the academic laboratory and into devices and commercial products. Safranski introduces the properties of shape-memory polymers and presents design principles for designing and manufacturing, providing a guide for the R&D engineer/scientist and design engineer to add the shape memory effect of polymers into their design toolbox. This is the first book to focus on applying basic science knowledge to design practical devices, introducing the concept of shape-memory polymers, the history of their use, and the range of current applications. It details the specific design principles for working with shape-memory polymers that don't often apply to mechanically inactive materials and products. Material selection is thoroughly discussed because chemical structure and thermo-mechanical properties are intrinsically linked to shape-memory performance. Further chapters discuss programming the temporary shape and recovery through a variety of activation methods with real world examples. Finally, current devices across a variety of markets are highlighted to show the breadth of possible applications. - Demystifies shape-memory polymers, providing a guide to their properties and design principles - Explores a range of current and emerging applications across sectors, including biomedical, aerospace/automotive, and consumer goods - Places shape-memory polymers in the design toolkit of R&D scientists/engineers and design engineers - Discusses material selection in-depth because chemical structure and thermo-mechanical properties are intrinsically linked to shape-memory performance