Polymer Alloys

Polymer Alloys PDF Author: Daniel Klempner
Publisher: Springer Science & Business Media
ISBN: 1468408747
Category : Technology & Engineering
Languages : en
Pages : 486

Get Book Here

Book Description
Alloy is a term commonly associated with metals and implies a composite which may be sinqle phase (solid solution) or heterophase. Whichever the case, metallic alloys generally exist because they exhibit improved properties over the base metal. There are numer ous types of metallic alloys, including interstitial solid solutions, substitutional solid solutions, and multiphase combinations of these with intermetallic compounds, valency compounds, electron compounds, etc. A similar situation exists with polymers. There are numerous types of composites, or "alloys" of polymers in existence today with new ones being created continuously. Polyblends are simple physical mixtures of the constituent polymers with no covalent bonds occuring between them. As with metals, these may be homogeneous (single phase) solid solytions or heterogeneous (multiple phase) mixtures. With polymers, the latter case is by far the most prevalent situation due to the thermodynamic incompatibility of most polymers. This is due to the relatively small gain in entropy upon mixing the polymers due to contiguity restrictions imposed by their large chain length.

Polymer Alloys

Polymer Alloys PDF Author: Daniel Klempner
Publisher: Springer Science & Business Media
ISBN: 1468408747
Category : Technology & Engineering
Languages : en
Pages : 486

Get Book Here

Book Description
Alloy is a term commonly associated with metals and implies a composite which may be sinqle phase (solid solution) or heterophase. Whichever the case, metallic alloys generally exist because they exhibit improved properties over the base metal. There are numer ous types of metallic alloys, including interstitial solid solutions, substitutional solid solutions, and multiphase combinations of these with intermetallic compounds, valency compounds, electron compounds, etc. A similar situation exists with polymers. There are numerous types of composites, or "alloys" of polymers in existence today with new ones being created continuously. Polyblends are simple physical mixtures of the constituent polymers with no covalent bonds occuring between them. As with metals, these may be homogeneous (single phase) solid solytions or heterogeneous (multiple phase) mixtures. With polymers, the latter case is by far the most prevalent situation due to the thermodynamic incompatibility of most polymers. This is due to the relatively small gain in entropy upon mixing the polymers due to contiguity restrictions imposed by their large chain length.

Polymer Blends and Alloys

Polymer Blends and Alloys PDF Author: George P. Simon
Publisher: Routledge
ISBN: 1351423622
Category : Science
Languages : en
Pages : 766

Get Book Here

Book Description
Distinguishing among blends, alloys and other types of combinations, clarifying terminology and presenting data on new processes and materials, this work present up-to-date and effective compounding techniques for polymers. It offers extensive analyses on the challenging questions that surround miscibility, compatibility, dynamic processing, interaction/phase behaviour, and computer simulations for predicting behaviours of polymer mixture and interaction.

Polymer Alloys III

Polymer Alloys III PDF Author: Daniel Klempner
Publisher: Springer Science & Business Media
ISBN: 1468443585
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book Here

Book Description
On this, the dawning of a new age in high technology, man is seeking answers to increasingly complex problems. We are routinely launching reusable vehicles into space, designing and building computers with seemingly limitless powers, and developing sophisticated communications systems using laser technology, fiber optics, holography, etc., all of which require new and advanced materials. Polymer alloys continue to provide new solutions to the materials problems, and remain an area of ever increasing research. Polymer alloys are mu1ticomponent macromolecular systems. The components may be all on the same chain (as in block co polymers), on side chains (as in graft copolymers), or in different molecules (as in po1yb1ends and interpenetrating polymer networks). The variety of morphologies possible and the synergistic effects on ultimate properties continue to stimulate research on new polymer alloys. More and more studies on synthesis of new alloys, the kinetics and mecha nisms of their formation, and their characterization, are taking place, as well as studies on their processing and applications. This book presents the proceedings of the Symposium on Polymer Alloys, sponsored by the American Chemical Society's Division of OrganiC Coatings and Plastics Chemistry held at the 182nd meeting of the American Chemical Society in New York, in August, 1981. The most recent efforts of scientists and engineers from allover the world in this increasingly important field are presented in the following pages.

Polymer Blends and Alloys

Polymer Blends and Alloys PDF Author: M.J. Folkes
Publisher: Springer Science & Business Media
ISBN: 9401121621
Category : Technology & Engineering
Languages : en
Pages : 270

Get Book Here

Book Description
P. S. HOPE and M. J. FOLKES Mixing two or more polymers together to produce blends or alloys is a well-established strategy for achieving a specified portfolio of physical proper ties, without the need to synthesise specialised polymer systems. The subject is vast and has been the focus of much work, both theoretical and experimental. Much ofthe earlier work in this field was necessarily empirical and many ofthe blends produced were of academic rather than commercial interest. The manner in which two (or more) polymers are compounded together is of vital importance in controlling the properties of blends. Moreover, particular ly through detailed rheological studies, it is becoming apparent that process ing can provide a wide range of blend microstructures. In an extreme, this is exemplified by the in situ formation of fibres resulting from the imposition of predetermined flow fields on blends, when in the solution or melt state. The microstructures produced in this case transform the blend into a true fibre composite; this parallels earlier work on the deformation of metal alloys. This type of processing-structure-property correlation opens up many new possi bilities for innovative applications; for example, the production of stiff fibre composites and blends having anisotropic transport properties, such as novel membranes. This book serves a dual purpose.

Polymer Alloys and Blends

Polymer Alloys and Blends PDF Author: L. A. Utracki
Publisher:
ISBN: 9781569901045
Category : Science
Languages : en
Pages : 367

Get Book Here

Book Description
An introduction to polymer alloys and blends.

Polymer Alloys II

Polymer Alloys II PDF Author: Daniel Klempner
Publisher: Springer Science & Business Media
ISBN: 1468436295
Category : Technology & Engineering
Languages : en
Pages : 285

Get Book Here

Book Description
The term "alloy" as pertaining to polymers has become an increasingly popular description of composites of polymers, parti cularly since the publication of the first volume in this series in 1977. Polymer alloy refers to that class of macromolecular materials which, in general, consists of combinations of chemically different polymers. The polymers involved in these combinations may be hetero geneous (multiphase) or homogeneous (single phase). They may be linked together with covalent bonds between the component polymers (block copolymers, graft copolymers), linked topologically with no covalent bonds (interpenetrating polymer networks), or not linked at all except physically (polyblends). In addition, they may be linear (thermoplastic), crosslinked (thermosetting), crystalline, or amorphous, although the latter is more common. To the immense satisfaction - but not surprise - of the editors, there has been no decrease in the research and development of polymer alloys since the publication of the first volume, as evidenced by numerous publications, conferences and symposia. Continued advances in polymer technology caused by the design of new types of polymer alloys have also been noted. This technolog ical interest stems from the fact that these materials very often exhibit a synergism in properties achievable only by the formation of polymer alloys. The classic examples, of course, are the high impact plastics, which are either polyblends, block, or graft co polymers composed of a rubbery and a glassy polymer. Interpene trating polymer networks (IPN's) of such polymers also exhibit the same, or even greater, synergism.

Polymer Blends and Alloys

Polymer Blends and Alloys PDF Author: George P. Simon
Publisher: Routledge
ISBN: 1351423614
Category : Technology & Engineering
Languages : en
Pages : 774

Get Book Here

Book Description
Distinguishing among blends, alloys and other types of combinations, clarifying terminology and presenting data on new processes and materials, this work present up-to-date and effective compounding techniques for polymers. It offers extensive analyses on the challenging questions that surround miscibility, compatibility, dynamic processing, interaction/phase behaviour, and computer simulations for predicting behaviours of polymer mixture and interaction.

Semiconducting Polymer Materials for Biosensing Applications

Semiconducting Polymer Materials for Biosensing Applications PDF Author: Kuan Yew Cheong
Publisher: Elsevier
ISBN: 0323951066
Category : Technology & Engineering
Languages : en
Pages : 404

Get Book Here

Book Description
Semiconducting Polymer Materials for Biosensing Applications provides a comprehensive look at semiconducting polymer materials and their deposition, characterization and use in biosensors. The book begins with an introduction to the key materials and background of essential technologies. Major types of monomer chemistries and fabrication of polymer materials are discussed, with a focus on semiconducting films suitable for use in (bio)sensors. A survey of the state-of-the-art for organic thin-film polymer semiconductor sensor-based fabrication methods for materials and devices covers a wide range of chemical, material, physical and advanced fabrication techniques. The book concludes with a chapter on theoretical insights for designing sensors, (bio)sensors for medical, food and environmental applications and the future of sensors. This book is suitable for materials scientists and engineers and biomedical engineers in academia or industry. - Reviews the most promising semiconductor polymer materials, such as conjugated polymers most frequently used in biosensing applications - Provides an overview of the electrochemical techniques to process semiconductor polymer materials - Discusses the use of semiconductor polymer-based biosensors in biomedical, environmental, chemical and aerospace applications

Multicomponent Polymeric Materials

Multicomponent Polymeric Materials PDF Author: Jin Kuk Kim
Publisher: Springer
ISBN: 9401773246
Category : Science
Languages : en
Pages : 411

Get Book Here

Book Description
The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing and manufacturing new materials for novel end-use applications. The book takes a detailed approach to the description of process parameters, process optimization, mold design, and other core manufacturing information. Details of injection, extrusion, and compression molding processes have been provided based on the most recent advances in the field. Over two comprehensive sections the book covers the entire field of multiphase polymer materials, from a detailed description of material design and processing to the cutting-edge applications of such multiphase materials. It provides both precise guidelines and general concepts for the present and future leaders in academic and industrial sectors.

Carbon Alloys

Carbon Alloys PDF Author: E. Yasuda
Publisher: Elsevier
ISBN: 0080528538
Category : Science
Languages : en
Pages : 584

Get Book Here

Book Description
In recent years the Japanese have funded a comprehensive study of carbon materials which incorporate other elements including boron, nitrogen and fluorine, hence the title of the project "Carbon Alloys".Coined in 1992, the phrase "Carbon Alloys" can be applied to those materials mainly composed of carbon materials in multi-component systems. The carbon atoms of each component have a physical and/or chemical interactive relationship with other atoms or compounds. The carbon atoms of the components may have different hybrid bonding orbitals to create quite different carbon components.Eiichi Yasuda and his team consider the definition of Carbon Alloys, present the results of the Carbon Alloys projects, describe typical Carbon Alloys and their uses, discuss recent techniques for their characterization, and finally, illustrate potential applications and future developments for Carbon Alloy science. The book contains over thirty chapters on these studies from as many researchers.The most modern of techniques, particularly in the area of spectroscopy, were used as diagnostic tools, and many of these are applicable to pure carbons also. Porosity in carbons received considerable attention.