Polylactide Foams

Polylactide Foams PDF Author: Mohammadreza Nofar
Publisher: William Andrew
ISBN: 0128139927
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
Polylactide Foams: Fundamentals, Manufacturing, and Applications provides an introduction to the fundamental science behind plastic foams, polylactic acid) and polylactide foaming, giving designers tactics to replace traditional resins with sustainable and biodegradable materials. The book then delves deeper into the technology behind PLA foaming, such as PLA/gas mixture characteristics, solubility, interfacial tension behaviors and crystallization kinetics of various types of PLA and their compounds. The foaming behaviors and mechanisms of various types of PLA and PLA compounds are extensively analyzed and discussed through different manufacturing technologies, namely extrusion foaming, foam injection molding and bead foaming. Interest in Poly(lactic acid) and PLA foams is extremely high – particularly as a potential replacement for styrenic resins – and the price of PLA resin is lower than ever before. This biopolymer has significant potential to improve the sustainability of the plastics industry. Polylactide Foams have a range of potential applications, such as in construction, packaging, insulation, biomedical scaffolds, and others. However, processing and performance of PLA are not at the same level as other non-biodegradable resins. - Introduces the concepts behind foaming, poly(lactic acid) and PLA foaming - Supports further research and development in PLA foams by covering the state-of-the-art in different manufacturing and processing methods - Provides practical guidance for materials scientists and engineers in industry looking to replace traditional polymer resins with a sustainable, biodegradable alternative

Polylactide Foams

Polylactide Foams PDF Author: Mohammadreza Nofar
Publisher: William Andrew
ISBN: 0128139927
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
Polylactide Foams: Fundamentals, Manufacturing, and Applications provides an introduction to the fundamental science behind plastic foams, polylactic acid) and polylactide foaming, giving designers tactics to replace traditional resins with sustainable and biodegradable materials. The book then delves deeper into the technology behind PLA foaming, such as PLA/gas mixture characteristics, solubility, interfacial tension behaviors and crystallization kinetics of various types of PLA and their compounds. The foaming behaviors and mechanisms of various types of PLA and PLA compounds are extensively analyzed and discussed through different manufacturing technologies, namely extrusion foaming, foam injection molding and bead foaming. Interest in Poly(lactic acid) and PLA foams is extremely high – particularly as a potential replacement for styrenic resins – and the price of PLA resin is lower than ever before. This biopolymer has significant potential to improve the sustainability of the plastics industry. Polylactide Foams have a range of potential applications, such as in construction, packaging, insulation, biomedical scaffolds, and others. However, processing and performance of PLA are not at the same level as other non-biodegradable resins. - Introduces the concepts behind foaming, poly(lactic acid) and PLA foaming - Supports further research and development in PLA foams by covering the state-of-the-art in different manufacturing and processing methods - Provides practical guidance for materials scientists and engineers in industry looking to replace traditional polymer resins with a sustainable, biodegradable alternative

Multiphase Polylactide Blends

Multiphase Polylactide Blends PDF Author: Mohammadreza Nofar
Publisher: Elsevier
ISBN: 0128241519
Category : Science
Languages : en
Pages : 405

Get Book Here

Book Description
Multiphase Polylactide Blends: Toward a Sustainable and Green Environment guides the reader through fundamentals, science, preparation, and key areas of innovation in polylactide (PLA) blends. Bio-based polymers, and notably PLA, have not only gained increasing interest as a more sustainable alternative but also bring challenges in terms of mechanical, rheological, thermal and physical properties, processability, shapability, and foamability. The use of blends looks to address these, with the development of new types of economically viable and environmentally friendly systems. This is a valuable book for academic researchers, scientists, and graduate students across bio-based polymers, polymer science, chemistry, and materials science, as well as engineers, R&D professionals, and all those in industry with interest in PLA-based blends, biopolymers, and sustainable materials and products. More specifically, the first three chapters of this book overview the fundamentals of thermoplastic polymers, polymer blends, and structure and properties of PLA. These chapters could technically be used as a valuable textbook on the noted topics. The rest of the chapters inclusively study the fundamentals, investigations, and achievements in PLA-based blends with various types of polymers. These include miscible blends of poly L-lactide and poly D-lactide, binary immiscible/miscible blends of PLA with other thermoplastics and elastomers, PLA-based ternary blends and blend nanocomposites, as well as PLA-based blend foams. Overall, this book provides a thorough and critical overview of the state of the art in PLA-based blends, including significant past and recent advances, with the aim of supporting and shaping further research and industrial application of these materials for the development of a green and sustainable future. - Overviews the fundamentals of thermoplastic polymers, polymer blends, and the structure and properties of PLA. - Provides detailed coverage of the fundamentals and science of PLA blends, including phase miscibility, thermal and mechanical properties, interface and rheological properties, the use of compatibilizers, and phase morphological analysis. - Offers a thorough critical overview of the state of the art in processing and development of PLA-based blends, addressing key challenges and future perspectives. - Covers the latest advances, including PLA-based ternary blends, blend nanocomposites, and PLA-based blend microcellular foams.

Polymeric Foams

Polymeric Foams PDF Author: Shau-Tarng Lee
Publisher: CRC Press
ISBN: 1315352370
Category : Technology & Engineering
Languages : en
Pages : 322

Get Book Here

Book Description
Polymeric foams are sturdy yet lightweight materials with applications across a variety of industries, from packaging to aerospace. As demand for these materials increase, so does innovation in the development of new processes and products. This book captures the most dynamic advances in processes, technologies, and products related to the polymeric foam market. It describes the latest business trends including new microcellular commercialization, sustainable foam products, and nanofoams. It also discusses novel processes, new and environmentally friendly blowing agents, and the development and usage of various types of foams, including bead and polycarbonate, polypropylene, polyetherimide microcellular, and nanocellular. The book also covers flame-retardant foams, rigid foam composites, and foam sandwich composites and details applications in structural engineering, electronics, and insulation. Authored by leading experts in the field, this book minimizes the gap between research and application in this important and growing area.

Polymeric Foams

Polymeric Foams PDF Author: S.-T. Lee
Publisher: CRC Press
ISBN: 1000588726
Category : Technology & Engineering
Languages : en
Pages : 335

Get Book Here

Book Description
Polymeric Foams: Innovations in Technologies and Environmentally Friendly Materials offers the latest in technology and environmental innovations within the field of polymeric foams. It outlines how application-focused research in polymeric foam can continue to improve living quality and enhance social responsibility. This book: Addresses technological innovations including those in bead foams, foam injection molding, foams in tissue engineering, foams in insulation, and silicon rubber foam Discusses environmentally friendly innovations in PET foam, degradable and renewable foam, and physical blowing agents Describes principles as well as applications from internationally recognized foam experts This work is aimed at researchers and industry professionals across chemical, mechanical, materials, polymer engineering, and anyone else developing and applying these advanced polymeric materials.

Biofoams

Biofoams PDF Author: Salvatore Iannace
Publisher: CRC Press
ISBN: 1466561807
Category : Science
Languages : en
Pages : 457

Get Book Here

Book Description
Addresses a Growing Need for the Development of Cellular and Porous Materials in IndustryBuilding blocks used by nature are motivating researchers to create bio-inspired cellular structures that can be used in the development of products for the plastic, food, and biomedical industry. Representing a unified effort by international experts, Biofoams

Sustainable Polylactide-Based Blends

Sustainable Polylactide-Based Blends PDF Author: Suprakas Sinha Ray
Publisher: Elsevier
ISBN: 0323858694
Category : Technology & Engineering
Languages : en
Pages : 460

Get Book Here

Book Description
Sustainable Polylactide-Based Blends provides a critical overview of the state-of-the-art in polylactide (PLA)-based blends, addressing the latest advances, innovative processing techniques and fundamental issues that persist in the field. Sections cover the fundamentals of sustainable polymeric materials, polylactide and polymer blends, current and upcoming processing technologies, structure and morphology characterization techniques for PLA and PLA-based blends, and the processing, morphology development, and properties of polylactide-based blends. Final chapters focus on current and future applications, market potential, key challenges and future outlooks. Throughout the book, theoretical modeling of immiscible polymer blends helps to establish structure-property relationships in various PLA-based polymer blends. With in-depth coverage of fundamentals and processing techniques, the book aims to support the selection of each processing method, along with an understanding of surface chemistry to achieve improved compatibility between phases. - Explains fundamental aspects of polylactide-based blends, including characterization methods and property measurement techniques - Offers comprehensive and detailed coverage of processing, morphology and properties, all organized by blend material - Analyzes novel methods and addresses challenges associated with PLA-based blends, with a focus on applications and market potential

Advances in Sustainable Polymers

Advances in Sustainable Polymers PDF Author: Vimal Katiyar
Publisher: Springer Nature
ISBN: 9811512515
Category : Technology & Engineering
Languages : en
Pages : 421

Get Book Here

Book Description
This book discusses synthesis and characterization of sustainable polymers. The book covers opportunities and challenges of using sustainable polymers to replace existing petroleum based feedstock. This volume provides insights into the chemistry of polymerization, and discusses tailoring the properties of the polymers at the source in order fit requirements of specific applications. The book also covers processing of these polymers and their critical assessment. The book will be of use to chemists and engineers in the industry and academia working on sustainable polymers and their commercialization to replace dependence on petroleum-based polymers.

Medical Nanotechnology and Nanomedicine

Medical Nanotechnology and Nanomedicine PDF Author: Harry F. Tibbals
Publisher: CRC Press
ISBN: 1351834142
Category : Medical
Languages : en
Pages : 549

Get Book Here

Book Description
Considering the fluid nature of nano breakthroughs—and the delicate balance between benefits and consequences as they apply to medicine—readers at all levels require a practical, understandable base of information about these developments to take greatest advantage of them. Medical Nanotechnology and Nanomedicine meets that need by introducing non-experts to nanomedicine and its evolving organizational infrastructure. This practical reference investigates the impact of nanotechnology on applications in medicine and biomedical sciences, and the broader societal and economic effects. Eschewing technological details, it focuses on enhancing awareness of the business, regulatory, and administrative aspects of medical applications. It gives readers a critical, balanced, and realistic evaluation of existing nanomedicine developments and future prospects—an ideal foundation upon which to plan and make decisions. Covers the use of nanotechnology in medical applications including imaging, diagnosis and monitoring, drug delivery systems, surgery, tissue regeneration, and prosthetics Part of the Perspectives in Nanotechnology series—which contains broader coverage of the societal implications of nanotechnology—this book can be used as a standalone reference. Organized by historical perspective, current status, and future prospects, this powerful book: Explores background, definitions and terms, and recent trends and forces in nanomedicine Surveys the landscape of nanomedicine in government, academia, and the private sector Reviews projected future directions, capabilities, sustainability, and equity of nanomedicine, and choices to be made regarding its use Includes graphical illustrations, references, and keywords to reinforce concepts and aid further research In its assessment of alternative and sometimes conflicting concepts proposed for the application of nanotechnology to medicine, this book surveys major initiatives and the work of leading labs and innovators. It uses informative examples and case summaries to illustrate proven accomplishments and imagined possibilities in research and development.

Biopolymer Methods in Tissue Engineering

Biopolymer Methods in Tissue Engineering PDF Author: Anthony P. Hollander
Publisher: Springer Science & Business Media
ISBN: 159259428X
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book Here

Book Description
There is an urgent need to develop new approaches to treat conditions as- ciated with the aging global population. The surgeon’s approach to many of these problems could be described as having evolved through three stages: Removal: Traditionally, diseased or badly damaged tissues and structures might simply be removed. This was appropriate for limbs and non-essential organs, but could not be applied to structures that were critical to sustain life. An additional problem was the creation of disability or physical deformity that in turn could lead to further complications. Replacement: In an effort to treat wider clinical problems, or to overcome the limitations of amputation, surgeons turned to the use of implanted materials and medical devices that could replace the functions of biological structures. This field developed rapidly in the 1960s and 1970s, with heart valve and total joint replacement becoming common. The term “biomaterial” was used increasingly to describe the materials used in these operations, and the study of biomaterials became one of the first truly interdisciplinary research fields. Today, biomaterials are employed in many millions of clinical procedures each year and they have become the mainstay of a very successful industry.

Poly(lactic acid)

Poly(lactic acid) PDF Author: Rafael A. Auras
Publisher: John Wiley & Sons
ISBN: 111976744X
Category : Technology & Engineering
Languages : en
Pages : 692

Get Book Here

Book Description
POLY(LACTIC ACID) The second edition of a key reference, fully updated to reflect new research and applications Poly(lactic acid)s – PLAs, biodegradable polymers derived from lactic acid, have become vital components of a sustainable society. Eco-friendly PLA polymers are used in numerous industrial applications ranging from packaging to medical implants and to wastewater treatment. The global PLA market is predicted to expand significantly over the next decade due to increasing demand for compostable and recyclable materials produced from renewable resources. Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life provides comprehensive coverage of the basic chemistry, production, and industrial use of PLA. Contributions from an international panel of experts review specific processing methods, characterization techniques, and various applications in medicine, textiles, packaging, and environmental engineering. Now in its second edition, this fully up-to-date volume features new and revised chapters on 3D printing, the mechanical and chemical recycling of PLA, PLA stereocomplex crystals, PLA composites, the environmental footprint of PLA, and more. Highlights the biodegradability, recycling, and sustainability benefits of PLA Describes processing and conversion technologies for PLA, such as injection molding, extrusion, blending, and thermoforming Covers various aspects of lactic acid/lactide monomers, including physicochemical properties and production Examines different condensation reactions and modification strategies for enhanced polymerization of PLA Discusses the thermal, rheological, and mechanical properties of PLA Addresses degradation and environmental issues of PLA, including photodegradation, radiolysis, hydrolytic degradation, biodegradation, and life cycle assessment Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life, Second Edition remains essential reading for polymer engineers, materials scientists, polymer chemists, chemical engineers, industry professionals using PLA, and scientists and advanced student engineers interested in biodegradable plastics.