Elements of Point Set Topology

Elements of Point Set Topology PDF Author: John D. Baum
Publisher: Courier Corporation
ISBN: 0486668266
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student.

Elements of Point Set Topology

Elements of Point Set Topology PDF Author: John D. Baum
Publisher: Courier Corporation
ISBN: 0486668266
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student.

Point Set Topology

Point Set Topology PDF Author: Steven A. Gaal
Publisher: Courier Corporation
ISBN: 0486472221
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Suitable for a complete course in topology, this text also functions as a self-contained treatment for independent study. Additional enrichment materials make it equally valuable as a reference. 1964 edition.

A Course in Point Set Topology

A Course in Point Set Topology PDF Author: John B. Conway
Publisher: Springer Science & Business Media
ISBN: 3319023683
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
This textbook in point set topology is aimed at an upper-undergraduate audience. Its gentle pace will be useful to students who are still learning to write proofs. Prerequisites include calculus and at least one semester of analysis, where the student has been properly exposed to the ideas of basic set theory such as subsets, unions, intersections, and functions, as well as convergence and other topological notions in the real line. Appendices are included to bridge the gap between this new material and material found in an analysis course. Metric spaces are one of the more prevalent topological spaces used in other areas and are therefore introduced in the first chapter and emphasized throughout the text. This also conforms to the approach of the book to start with the particular and work toward the more general. Chapter 2 defines and develops abstract topological spaces, with metric spaces as the source of inspiration, and with a focus on Hausdorff spaces. The final chapter concentrates on continuous real-valued functions, culminating in a development of paracompact spaces.

Set Topology

Set Topology PDF Author: R. Vaidyanathaswamy
Publisher: Courier Corporation
ISBN: 9780486404561
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
This introductory text covers the algebra of subsets and of rings and fields of sets, complementation and ideal theory in the distributive lattice, closure function, neighborhood topology, much more. Includes numerous exercises. 1960 edition.

Topology

Topology PDF Author: Tai-Danae Bradley
Publisher: MIT Press
ISBN: 0262359626
Category : Mathematics
Languages : en
Pages : 167

Get Book Here

Book Description
A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory--a contemporary branch of mathematics that provides a way to represent abstract concepts--both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics.

Elementary Point-Set Topology

Elementary Point-Set Topology PDF Author: Andre L. Yandl
Publisher: Courier Dover Publications
ISBN: 0486811018
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
In addition to serving as an introduction to the basics of point-set topology, this text bridges the gap between the elementary calculus sequence and higher-level mathematics courses. The versatile, original approach focuses on learning to read and write proofs rather than covering advanced topics. Based on lecture notes that were developed over many years at The University of Seattle, the treatment is geared toward undergraduate math majors and suitable for a variety of introductory courses. Starting with elementary concepts in logic and basic techniques of proof writing, the text defines topological and metric spaces and surveys continuity and homeomorphism. Additional subjects include product spaces, connectedness, and compactness. The final chapter illustrates topology's use in other branches of mathematics with proofs of the fundamental theorem of algebra and of Picard's existence theorem for differential equations. "This is a back-to-basics introductory text in point-set topology that can double as a transition to proofs course. The writing is very clear, not too concise or too wordy. Each section of the book ends with a large number of exercises. The optional first chapter covers set theory and proof methods; if the students already know this material you can start with Chapter 2 to present a straight topology course, otherwise the book can be used as an introduction to proofs course also." — Mathematical Association of America

Topology

Topology PDF Author: Paul L. Shick
Publisher: John Wiley & Sons
ISBN: 1118030583
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
The essentials of point-set topology, complete with motivation and numerous examples Topology: Point-Set and Geometric presents an introduction to topology that begins with the axiomatic definition of a topology on a set, rather than starting with metric spaces or the topology of subsets of Rn. This approach includes many more examples, allowing students to develop more sophisticated intuition and enabling them to learn how to write precise proofs in a brand-new context, which is an invaluable experience for math majors. Along with the standard point-set topology topics—connected and path-connected spaces, compact spaces, separation axioms, and metric spaces—Topology covers the construction of spaces from other spaces, including products and quotient spaces. This innovative text culminates with topics from geometric and algebraic topology (the Classification Theorem for Surfaces and the fundamental group), which provide instructors with the opportunity to choose which "capstone" best suits his or her students. Topology: Point-Set and Geometric features: A short introduction in each chapter designed to motivate the ideas and place them into an appropriate context Sections with exercise sets ranging in difficulty from easy to fairly challenging Exercises that are very creative in their approaches and work well in a classroom setting A supplemental Web site that contains complete and colorful illustrations of certain objects, several learning modules illustrating complicated topics, and animations of particularly complex proofs

Real Analysis with Point-set Topology

Real Analysis with Point-set Topology PDF Author: Donald L. Stancl
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description


Non-Hausdorff Topology and Domain Theory

Non-Hausdorff Topology and Domain Theory PDF Author: Jean Goubault-Larrecq
Publisher: Cambridge University Press
ISBN: 1107328772
Category : Mathematics
Languages : en
Pages : 499

Get Book Here

Book Description
This unique book on modern topology looks well beyond traditional treatises and explores spaces that may, but need not, be Hausdorff. This is essential for domain theory, the cornerstone of semantics of computer languages, where the Scott topology is almost never Hausdorff. For the first time in a single volume, this book covers basic material on metric and topological spaces, advanced material on complete partial orders, Stone duality, stable compactness, quasi-metric spaces and much more. An early chapter on metric spaces serves as an invitation to the topic (continuity, limits, compactness, completeness) and forms a complete introductory course by itself. Graduate students and researchers alike will enjoy exploring this treasure trove of results. Full proofs are given, as well as motivating ideas, clear explanations, illuminating examples, application exercises and some more challenging problems for more advanced readers.

Frames and Locales

Frames and Locales PDF Author: Jorge Picado
Publisher: Springer Science & Business Media
ISBN: 3034801548
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
Until the mid-twentieth century, topological studies were focused on the theory of suitable structures on sets of points. The concept of open set exploited since the twenties offered an expression of the geometric intuition of a "realistic" place (spot, grain) of non-trivial extent. Imitating the behaviour of open sets and their relations led to a new approach to topology flourishing since the end of the fifties.It has proved to be beneficial in many respects. Neglecting points, only little information was lost, while deeper insights have been gained; moreover, many results previously dependent on choice principles became constructive. The result is often a smoother, rather than a more entangled, theory. No monograph of this nature has appeared since Johnstone's celebrated Stone Spaces in 1983. The present book is intended as a bridge from that time to the present. Most of the material appears here in book form for the first time or is presented from new points of view. Two appendices provide an introduction to some requisite concepts from order and category theories.