Author: Radoslav Adzic
Publisher: Springer
ISBN: 9783030495688
Category : Science
Languages : en
Pages : 0
Book Description
This book describes a science and technology of a new type of electrocatalysts consisting of a single atomic layer of platinum on suitable supports. This development helped overcome three major obstacles—catalysts‘ cost, activity, and stability—for a broad range of fuel cell applications. The volume begins with a short introduction to the science of electrocatalysis, covering four reactions important for energy conversion in fuel cells. A description follows of the properties of metal monolayers on electrode surfaces, and underpotential deposition of metals. The authors then describe the concept of Pt monolayer electrocatalysts and its implications and their synthesis by galvanic displacement of less-noble metal monolayers and other methods. The main part of the book presents a discussion of catalysts’ characterization and catalytic properties of Pt monolayers for the four main reactions of electrochemical energy conversion: oxygen reduction and oxidation of hydrogen, methanol and ethanol. The book concludes with a treatment of scale-up syntheses, fuel cell tests, catalysts’ stability and application prospects.
Platinum Monolayer Electrocatalysts
Author: Radoslav Adzic
Publisher: Springer Nature
ISBN: 3030495663
Category : Science
Languages : en
Pages : 174
Book Description
This book describes a science and technology of a new type of electrocatalysts consisting of a single atomic layer of platinum on suitable supports. This development helped overcome three major obstacles—catalysts‘ cost, activity, and stability—for a broad range of fuel cell applications. The volume begins with a short introduction to the science of electrocatalysis, covering four reactions important for energy conversion in fuel cells. A description follows of the properties of metal monolayers on electrode surfaces, and underpotential deposition of metals. The authors then describe the concept of Pt monolayer electrocatalysts and its implications and their synthesis by galvanic displacement of less-noble metal monolayers and other methods. The main part of the book presents a discussion of catalysts’ characterization and catalytic properties of Pt monolayers for the four main reactions of electrochemical energy conversion: oxygen reduction and oxidation of hydrogen, methanol and ethanol. The book concludes with a treatment of scale-up syntheses, fuel cell tests, catalysts’ stability and application prospects.
Publisher: Springer Nature
ISBN: 3030495663
Category : Science
Languages : en
Pages : 174
Book Description
This book describes a science and technology of a new type of electrocatalysts consisting of a single atomic layer of platinum on suitable supports. This development helped overcome three major obstacles—catalysts‘ cost, activity, and stability—for a broad range of fuel cell applications. The volume begins with a short introduction to the science of electrocatalysis, covering four reactions important for energy conversion in fuel cells. A description follows of the properties of metal monolayers on electrode surfaces, and underpotential deposition of metals. The authors then describe the concept of Pt monolayer electrocatalysts and its implications and their synthesis by galvanic displacement of less-noble metal monolayers and other methods. The main part of the book presents a discussion of catalysts’ characterization and catalytic properties of Pt monolayers for the four main reactions of electrochemical energy conversion: oxygen reduction and oxidation of hydrogen, methanol and ethanol. The book concludes with a treatment of scale-up syntheses, fuel cell tests, catalysts’ stability and application prospects.
Activity report
Author: Brookhaven National Laboratory. National Synchrotron Light Source
Publisher:
ISBN:
Category :
Languages : en
Pages : 244
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 244
Book Description
Electrocatalysis in Fuel Cells
Author: Minhua Shao
Publisher: MDPI
ISBN: 3038422347
Category : Science
Languages : en
Pages : 689
Book Description
This book is a printed edition of the Special Issue "Electrocatalysis in Fuel Cells" that was published in Catalysts
Publisher: MDPI
ISBN: 3038422347
Category : Science
Languages : en
Pages : 689
Book Description
This book is a printed edition of the Special Issue "Electrocatalysis in Fuel Cells" that was published in Catalysts
Core-Shell and Yolk-Shell Nanocatalysts
Author: Hiromi Yamashita
Publisher: Springer Nature
ISBN: 9811604630
Category : Science
Languages : en
Pages : 570
Book Description
This book introduces recent progress in preparation and application of core-shell and yolk-shell structures for attractive design of catalyst materials. Core-shell nanostructures with active core particles covered directly with an inert shell can perform as highly active and selective catalysts with long lifetimes. Yolk-shell nanostructures consisting of catalytically active core particles encapsulated by hollow materials are an emerging class of nanomaterials. The enclosed void space is expected to be useful for encapsulation and compartmentation of guest molecules, and the outer shell acts as a physical barrier to protect the guest molecules from the surrounding environment. Furthermore, the tunability and functionality in the core and the shell regions can offer new catalytic properties, rendering them attractive platform materials for the design of heterogeneous catalysts. This book describes the recent development of such unique nanostructures to design effective catalysts which can lead to new chemical processes. It provides an excellent guide for design and application of core-shell and yolk-shell structured catalysts for a wide range of readers working on design of attractive catalysts, photocatalysts, and electrocatalysts for energy, environmental, and green chemical processes.
Publisher: Springer Nature
ISBN: 9811604630
Category : Science
Languages : en
Pages : 570
Book Description
This book introduces recent progress in preparation and application of core-shell and yolk-shell structures for attractive design of catalyst materials. Core-shell nanostructures with active core particles covered directly with an inert shell can perform as highly active and selective catalysts with long lifetimes. Yolk-shell nanostructures consisting of catalytically active core particles encapsulated by hollow materials are an emerging class of nanomaterials. The enclosed void space is expected to be useful for encapsulation and compartmentation of guest molecules, and the outer shell acts as a physical barrier to protect the guest molecules from the surrounding environment. Furthermore, the tunability and functionality in the core and the shell regions can offer new catalytic properties, rendering them attractive platform materials for the design of heterogeneous catalysts. This book describes the recent development of such unique nanostructures to design effective catalysts which can lead to new chemical processes. It provides an excellent guide for design and application of core-shell and yolk-shell structured catalysts for a wide range of readers working on design of attractive catalysts, photocatalysts, and electrocatalysts for energy, environmental, and green chemical processes.
Handbook of Fuel Cells
Author: Wolf Vielstich
Publisher: John Wiley & Sons
ISBN: 0470723114
Category : Technology & Engineering
Languages : en
Pages : 1090
Book Description
A timely addition to the highly acclaimed four-volume handbook set; volumes 5 and 6 highlight recent developments, particularly in the fields of new materials, molecular modeling and durability. Since the publication of the first four volumes of the Handbook of Fuel Cells in 2003, the focus of fuel cell research and development has shifted from optimizing fuel cell performance with well-known materials to developing new materials concepts, and to understanding the origins of materials and fuel cell degradation. This new two-volume set provides an authoritative and timely guide to these recent developments in fuel cell research.
Publisher: John Wiley & Sons
ISBN: 0470723114
Category : Technology & Engineering
Languages : en
Pages : 1090
Book Description
A timely addition to the highly acclaimed four-volume handbook set; volumes 5 and 6 highlight recent developments, particularly in the fields of new materials, molecular modeling and durability. Since the publication of the first four volumes of the Handbook of Fuel Cells in 2003, the focus of fuel cell research and development has shifted from optimizing fuel cell performance with well-known materials to developing new materials concepts, and to understanding the origins of materials and fuel cell degradation. This new two-volume set provides an authoritative and timely guide to these recent developments in fuel cell research.
Fuel Cell Science
Author: Andrzej Wieckowski
Publisher: John Wiley & Sons
ISBN: 1118063112
Category : Technology & Engineering
Languages : en
Pages : 652
Book Description
A comprehensive survey of theoretical andexperimental concepts in fuel cell chemistry Fuel cell science is undergoing significant development, thanks, in part, to a spectacular evolution of the electrocatalysis concepts, and both new theoretical and experimental methods. Responding to the need for a definitive guide to the field, Fuel Cell Science provides an up-to-date, comprehensive compendium of both theoretical and experimental aspects of the field. Designed to inspire scientists to think about the future of fuel cell technology, Fuel Cell Science addresses the emerging field of bio-electrocatalysis and the theory of heterogeneous reactions in fuel cell science and proposes potential applications for electrochemical energy production. The book is thorough in its coverage of the electron transfer process and structure of the electric double layer, as well as the development of operando measurements. Among other subjects, chapters describe: Recently developed strategies for the design, preparation, and characterization of catalytic materials for fuel cell electrodes, especially for new fuel cell cathodes A wide spectrum of theoretical and computational methods, with?the aim of?developing?new fuel cell catalysis concepts and improving existing designs to increase their performance.? Edited by two leading faculty, the book: Addresses the emerging fields of bio-electrocatalysis for fuel cells and theory of heterogeneous reactions for use in fuel cell catalysis Provides a survey of experimental and theoretical concepts in these new fields Shows the evolution of electrocatalysis concepts Describes the chemical physics of fuel cell reactions Forecasts future developments in electrochemical energy production and conversion Written for electrochemists and electrochemistry graduate students, electrocatalysis researchers, surface and physical chemists, chemical engineers, automotive engineers, and fuel cell and energy-related researchers, this modern compendium can help today's best minds meet the challenges in fuel science technology.
Publisher: John Wiley & Sons
ISBN: 1118063112
Category : Technology & Engineering
Languages : en
Pages : 652
Book Description
A comprehensive survey of theoretical andexperimental concepts in fuel cell chemistry Fuel cell science is undergoing significant development, thanks, in part, to a spectacular evolution of the electrocatalysis concepts, and both new theoretical and experimental methods. Responding to the need for a definitive guide to the field, Fuel Cell Science provides an up-to-date, comprehensive compendium of both theoretical and experimental aspects of the field. Designed to inspire scientists to think about the future of fuel cell technology, Fuel Cell Science addresses the emerging field of bio-electrocatalysis and the theory of heterogeneous reactions in fuel cell science and proposes potential applications for electrochemical energy production. The book is thorough in its coverage of the electron transfer process and structure of the electric double layer, as well as the development of operando measurements. Among other subjects, chapters describe: Recently developed strategies for the design, preparation, and characterization of catalytic materials for fuel cell electrodes, especially for new fuel cell cathodes A wide spectrum of theoretical and computational methods, with?the aim of?developing?new fuel cell catalysis concepts and improving existing designs to increase their performance.? Edited by two leading faculty, the book: Addresses the emerging fields of bio-electrocatalysis for fuel cells and theory of heterogeneous reactions for use in fuel cell catalysis Provides a survey of experimental and theoretical concepts in these new fields Shows the evolution of electrocatalysis concepts Describes the chemical physics of fuel cell reactions Forecasts future developments in electrochemical energy production and conversion Written for electrochemists and electrochemistry graduate students, electrocatalysis researchers, surface and physical chemists, chemical engineers, automotive engineers, and fuel cell and energy-related researchers, this modern compendium can help today's best minds meet the challenges in fuel science technology.
Electrocatalysis
Author: Minhua Shao
Publisher: Springer Nature
ISBN: 3030432947
Category : Science
Languages : en
Pages : 170
Book Description
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Publisher: Springer Nature
ISBN: 3030432947
Category : Science
Languages : en
Pages : 170
Book Description
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Applications Of X-ray Techniques To Nanomaterials For Energy Research
Author: Li-chyong Chen
Publisher: World Scientific
ISBN: 9811284652
Category : Science
Languages : en
Pages : 298
Book Description
Nanomaterials have become a key component for energy-related applications. Their design principle, synthesis and applications are well discussed in various scientific and engineering books, but a gap remains in discussions regarding the application of cutting-edge X-ray techniques to these materials. This volume provides insights from the latest development of X-ray techniques to investigate nanomaterials in specific energy fields, bridging the gap between X-ray analytical scientists and material researchers.We aim to provide researchers with a tool to choose suitable X-ray techniques, carry them out with the right procedure, and analyze the data to give the best reliable results. The approach is microscopic and specific. Among the applications emphasized by the chapters in this book are x-ray techniques in heterogeneous catalysis, electrocatalysis for fuel cells, photocatalysis for water splitting and carbon dioxide reduction, organic photovoltaics, and other energy-related applications.
Publisher: World Scientific
ISBN: 9811284652
Category : Science
Languages : en
Pages : 298
Book Description
Nanomaterials have become a key component for energy-related applications. Their design principle, synthesis and applications are well discussed in various scientific and engineering books, but a gap remains in discussions regarding the application of cutting-edge X-ray techniques to these materials. This volume provides insights from the latest development of X-ray techniques to investigate nanomaterials in specific energy fields, bridging the gap between X-ray analytical scientists and material researchers.We aim to provide researchers with a tool to choose suitable X-ray techniques, carry them out with the right procedure, and analyze the data to give the best reliable results. The approach is microscopic and specific. Among the applications emphasized by the chapters in this book are x-ray techniques in heterogeneous catalysis, electrocatalysis for fuel cells, photocatalysis for water splitting and carbon dioxide reduction, organic photovoltaics, and other energy-related applications.
Fuel Cell Catalysis
Author: Andrzej Wieckowski
Publisher: John Wiley & Sons
ISBN: 0470463740
Category : Science
Languages : en
Pages : 722
Book Description
Wiley Series on Electrocatalysis and Electrochemistry Fuel Cell Catalysis A Surface Science Approach A Core reference on fuel cell catalysis Fuel cells represent an important alternative energy source and a very active area of research. Fuel Cell Catalysis brings together world leaders in this field, providing a unique combination of state-of-the-art theory and computational and experimental methods. With an emphasis on understanding fuel cell catalysis at the molecular level, this text covers fundamental principles, future challenges, and important current research themes. Fuel Cell Catalysis: Provides a molecular-level description of catalysis for low-temperature polymer-electrolyte membrane fuel cells, including both hydrogen-oxygen cells and direct alcohol cells Examines catalysis issues of both anode and cathode such as oxygen reduction, alcohol oxidation, and CO tolerance Features a timely and forward-looking approach through emphasis on novel aspects such as computation and bio-inspiration Reviews the use and potential of surface-sensitive techniques like vibrational spectroscopy (IR, Raman, nonlinear spectroscopy, laser), scanning tunneling microscopy, X-ray scattering, NMR, electrochemical techniques, and more Reviews the use and potential of such modern computational techniques as DFT, ab initio MD, kinetic Monte Carlo simulations, and more Surveys important trends in reactivity and structure sensitivity, nanoparticles, "dynamic" catalysis, electrocatalysis vs. gas-phase catalysis, new experimental techniques, and nontraditional catalysts This cutting-edge collection offers a core reference for electrochemists, electrocatalysis researchers, surface and physical chemists, chemical and automotive engineers, and researchers in academia, research institutes, and industry.
Publisher: John Wiley & Sons
ISBN: 0470463740
Category : Science
Languages : en
Pages : 722
Book Description
Wiley Series on Electrocatalysis and Electrochemistry Fuel Cell Catalysis A Surface Science Approach A Core reference on fuel cell catalysis Fuel cells represent an important alternative energy source and a very active area of research. Fuel Cell Catalysis brings together world leaders in this field, providing a unique combination of state-of-the-art theory and computational and experimental methods. With an emphasis on understanding fuel cell catalysis at the molecular level, this text covers fundamental principles, future challenges, and important current research themes. Fuel Cell Catalysis: Provides a molecular-level description of catalysis for low-temperature polymer-electrolyte membrane fuel cells, including both hydrogen-oxygen cells and direct alcohol cells Examines catalysis issues of both anode and cathode such as oxygen reduction, alcohol oxidation, and CO tolerance Features a timely and forward-looking approach through emphasis on novel aspects such as computation and bio-inspiration Reviews the use and potential of surface-sensitive techniques like vibrational spectroscopy (IR, Raman, nonlinear spectroscopy, laser), scanning tunneling microscopy, X-ray scattering, NMR, electrochemical techniques, and more Reviews the use and potential of such modern computational techniques as DFT, ab initio MD, kinetic Monte Carlo simulations, and more Surveys important trends in reactivity and structure sensitivity, nanoparticles, "dynamic" catalysis, electrocatalysis vs. gas-phase catalysis, new experimental techniques, and nontraditional catalysts This cutting-edge collection offers a core reference for electrochemists, electrocatalysis researchers, surface and physical chemists, chemical and automotive engineers, and researchers in academia, research institutes, and industry.
PEM Fuel Cell Electrocatalysts and Catalyst Layers
Author: Jiujun Zhang
Publisher: Springer Science & Business Media
ISBN: 1848009364
Category : Technology & Engineering
Languages : en
Pages : 1147
Book Description
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.
Publisher: Springer Science & Business Media
ISBN: 1848009364
Category : Technology & Engineering
Languages : en
Pages : 1147
Book Description
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.