Plasticity and Geomechanics

Plasticity and Geomechanics PDF Author: R. O. Davis
Publisher: Cambridge University Press
ISBN: 9780521018098
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
Plasticity and Geomechanics is a concise introduction to the general subject of plasticity with a particular emphasis on applications in geomechanics. Derived from the authors' lecture notes, this book is written with students firmly in mind. Excessive use of mathematical methods is avoided and, where possible, physical interpretations are given for important concepts. The authors present a clear introduction to the complex ideas and concepts of plasticity and demonstrate how this developing subject is of critical importance to geomechanics and geotechnical engineering.

Elasticity and Geomechanics

Elasticity and Geomechanics PDF Author: R. O. Davis
Publisher: Cambridge University Press
ISBN: 9780521498272
Category : Science
Languages : en
Pages : 216

Get Book Here

Book Description
A concise examination of the use of elasticity in solving geotechnical engineering problems.

Plasticity and Geotechnics

Plasticity and Geotechnics PDF Author: Hai-Sui Yu
Publisher: Springer Science & Business Media
ISBN: 0387335994
Category : Science
Languages : en
Pages : 541

Get Book Here

Book Description
Plasticity and Geotechnics is the first attempt to summarize and present in a single volume the major achievements in the field of plasticity theory for geotechnical materials and its applications to geotechnical analysis and design. The book emerges from the author’s belief that there is an urgent need for the geotechnical and solid mechanics community to have a unified presentation of plasticity theory and its application to geotechnical engineering.

Fundamentals of Plasticity in Geomechanics

Fundamentals of Plasticity in Geomechanics PDF Author: S. Pietruszczak
Publisher: CRC Press
ISBN: 9780367577148
Category : Continuum mechanics
Languages : en
Pages : 206

Get Book Here

Book Description
This comprehensive text that covers the fundamentals of plasticity in relation to geomechanics. It gives a general background in soil/rock plasticity and an introduction to inelastic response of geomaterials. It is primarily for graduate students and practising engineers familiar with contemporary continuum mechanics.

Plasticity and Geomechanics

Plasticity and Geomechanics PDF Author: R. O. Davis
Publisher: Cambridge University Press
ISBN: 113943652X
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book Here

Book Description
Plasticity theory is widely used to describe the behaviour of soil and rock in many engineering situations. Plasticity and Geomechanics presents a concise introduction to the general subject of plasticity with a particular emphasis on applications in geomechanics. Derived from the authors' own lecture notes, this book is written with students firmly in mind. Excessive use of mathematical methods is avoided in the main body of the text and, where possible, physical interpretations are given for important concepts. In this way the authors present a clear introduction to the complex ideas and concepts of plasticity as well as demonstrating how this developing subject is of critical importance to geomechanics and geotechnical engineering. This book therefore complements Elasticity and Geomechanics by the same authors and will appeal to graduate students and researchers in the fields of soil mechanics, foundation engineering, and geomechanics.

Plasticity and Geomechanics

Plasticity and Geomechanics PDF Author: R. O. Davis
Publisher: Cambridge University Press
ISBN: 9780521818308
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
Plasticity and Geomechanics is a concise introduction to the general subject of plasticity with a particular emphasis on applications in geomechanics. Derived from the authors' lecture notes, this book is written with students firmly in mind. Excessive use of mathematical methods is avoided and, where possible, physical interpretations are given for important concepts. The authors present a clear introduction to the complex ideas and concepts of plasticity and demonstrate how this developing subject is of critical importance to geomechanics and geotechnical engineering.

Advances in Computational Plasticity

Advances in Computational Plasticity PDF Author: Eugenio Oñate
Publisher: Springer
ISBN: 3319608851
Category : Technology & Engineering
Languages : en
Pages : 443

Get Book Here

Book Description
This book brings together some 20 chapters on state-of-the-art research in the broad field of computational plasticity with applications in civil and mechanical engineering, metal forming processes, geomechanics, nonlinear structural analysis, composites, biomechanics and multi-scale analysis of materials, among others. The chapters are written by world leaders in the different fields of computational plasticity.

Principles of Hyperplasticity

Principles of Hyperplasticity PDF Author: Guy T. Houlsby
Publisher: Springer Science & Business Media
ISBN: 1846282403
Category : Technology & Engineering
Languages : en
Pages : 351

Get Book Here

Book Description
The approach to plasticity theory developed here is firmly rooted in thermodynamics. Emphasis is placed on the use of potentials and the derivation of incremental response, necessary for numerical analysis. The derivation of constitutive models for irreversible behaviour entirely from two scalar potentials is shown. The use of potentials allows models to be very simply defined, classified and, if necessary, developed and it permits dependent and independent variables to be interchanged, making possible different forms of a model for different applications. The theory is extended to include treatment of rate-dependent materials and a powerful concept, in which a single plastic strain is replaced by a plastic strain function, allowing smooth transitions between elastic and plastic behaviour is introduced. This monograph will benefit academic researchers in mechanics, civil engineering and geomechanics and practising geotechnical engineers; it will also interest numerical analysts in engineering mechanics.

Analytic Methods in Geomechanics

Analytic Methods in Geomechanics PDF Author: Kam-tim Chau
Publisher: CRC Press
ISBN: 1466555890
Category : Science
Languages : en
Pages : 446

Get Book Here

Book Description
A multidisciplinary field, encompassing both geophysics and civil engineering, geomechanics deals with the deformation and failure process in geomaterials such as soil and rock. Although powerful numerical tools have been developed, analytical solutions still play an important role in solving practical problems in this area. Analytic Methods in Geomechanics provides a much-needed text on mathematical theory in geomechanics, beneficial for readers of varied backgrounds entering this field. Written for scientists and engineers who have had some exposure to engineering mathematics and strength of materials, the text covers major topics in tensor analysis, 2-D elasticity, and 3-D elasticity, plasticity, fracture mechanics, and viscoelasticity. It also discusses the use of displacement functions in poroelasticity, the basics of wave propagations, and dynamics that are relevant to the modeling of geomaterials. The book presents both the fundamentals and more advanced content for understanding the latest research results and applying them to practical problems in geomechanics. The author gives concise explanations of each subject area, using a step-by-step process with many worked examples. He strikes a balance between breadth of material and depth of details, and includes recommended reading in each chapter for readers who would like additional technical information. This text is suitable for students at both undergraduate and graduate levels, as well as for professionals and researchers.

Notes on Geoplasticity

Notes on Geoplasticity PDF Author: William G. Pariseau
Publisher: CRC Press
ISBN: 0429766505
Category : Science
Languages : en
Pages : 243

Get Book Here

Book Description
This book is about geoplasticity, solid mechanics of rock, jointed rock and soil beyond the domain of a purely elastic deformation. Plastic deformation is irreversible and begins at the limit to elasticity with any attempt at further loading. Stress at the limit to elasticity is "strength" which is described by a functional relationship amongst stresses, that is, by a yield function or failure criterion. Mohr-Coulomb, Drucker-Prager and Hoek-Brown criteria are well-known examples in geomechanics. Beyond the elastic limit, but still within the realm of small strain increments, a total strain increment is the sum of an elastic increment and a plastic increment. The elastic increment is computed through an incremental form of Hooke’s law, isotropic or anisotropic as the case may be. Computation of the plastic part is at the core of any plasticity theory and is approached through the concept of a plastic potential. The plastic potential is a function of stresses and perhaps other material parameters such as plastic strain and temperature. Derivatives of the plastic potential with respect to stress lead to the plastic part of the total strain increment. If the yield criterion and plastic potential are the same, then the plastic stress-strain relationships are "associated rules of flow" and follow a "normality" principle. Normality is in reference to a graphical portrayal in principal stress space where the plastic strain increment is perpendicular to the yield surface. If the plastic potential and yield criterion are different, as is often the case in geoplasticity, then the rules of flow are "non-associated". Drucker’s famous stability postulate implies normality at a smooth point on the yield surface, convexity of the yield function and other important features of plasticity theory in geomechanics. However, there is no point to proceeding to theoretical analyses without physical justification. Hence, the physical foundations for application of plasticity theory to rock, jointed rock and soil are examined in Chapter 2 of this book. A brief review of continuum mechanics principles is given in Chapter 3. Chapter 4 focuses on plane plastic strain and "sliplines". The technical literature is replete with numerous diagrams of sliplines, especially in discussions of foundations on soils, but the relevant mathematics is often lacking and with it genuine understanding. Examples illustrate application of theory to traditional geomechanics problems such as computation of retaining wall forces in soils, foundation bearing capacity of soil and rock, wedge penetration of rock under confining pressure and others. Brief discussions of anisotropy, visco-plasticity and poro-plasticity are presented in Chapters 6, 7 and 8. This book will be of interest to civil, geological and mining engineers, particularly those involved in reliable design of excavations and foundations beyond elasticity, especially in jointed rock.