Plasma Diagnostics and Spectroscopy Using Tuneable IR Diode Lasers

Plasma Diagnostics and Spectroscopy Using Tuneable IR Diode Lasers PDF Author: W. Y. Fan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Plasma Diagnostics and Spectroscopy Using Tuneable IR Diode Lasers

Plasma Diagnostics and Spectroscopy Using Tuneable IR Diode Lasers PDF Author: W. Y. Fan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


New Enhanced Sensitivity Infrared Laser Spectroscopy Techniques Applied to Reactive Plasmas and Trace Gas Detection

New Enhanced Sensitivity Infrared Laser Spectroscopy Techniques Applied to Reactive Plasmas and Trace Gas Detection PDF Author: Stefan Welzel
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832523456
Category : Science
Languages : en
Pages : 198

Get Book Here

Book Description
Infrared laser absorption spectroscopy (IRLAS) employing both tuneable diode and quantum cascade lasers (TDLs, QCLs) has been applied with both high sensitivity and high time resolution to plasma diagnostics and trace gas measurements. TDLAS combined with a conventional White type multiple pass cell was used to detect up to 13 constituent molecular species in low pressure Ar/H2/N2/O2 and Ar/CH4/N2/O2 microwave discharges, among them the main products such as H2O, NH3, NO and CO, HCN respectively. The hydroxyl radical has been measured in the mid infrared (MIR) spectral range in-situ in both plasmas yielding number densities of between 1011 ... 1012 cm-3. Strong indications of surface dominated formation of either NH3 or N2O and NO were found in the H2-N2-O2 system. In methane containing plasmas a transition between deposition and etching conditions and generally an incomplete oxidation of the precursor were observed. The application of QCLs for IRLAS under low pressure conditions employing the most common tuning approaches has been investigated in detail. A new method of analysing absorption features quantitatively when the rapid passage effect is present is proposed. If power saturation is negligible, integrating the undisturbed half of the line profile yields accurate number densities without calibrating the system. By means of a time resolved analysis of individual chirped QCL pulses the main reasons for increased effective laser line widths could be identified. Apart from the well-known frequency down chirp non-linear absorption phenomena and bandwidth limitations of the detection system may significantly degrade the performance and accuracy of inter pulse spectrometers. The minimum analogue bandwidth of the entire system should normally not fall below 250 MHz. QCLAS using pulsed lasers has been used for highly time resolved measurements in reactive plasmas for the first time enabling a time resolution down to about 100 ns to be achieved. A temperature increase of typically less than 50 K has been established for pulsed DC discharges containing Ar/N2 and traces of NO. The main NO production and depletion reactions have been identified from a comparison of model calculations and time resolved measurements in plasma pulses of up to 100 ms. Considerable NO struction is observed after 5 ... 10 ms due to the impact of N atoms. Finally, thermoelectrically cooled pulsed and continuous wave (cw) QCLs have been employed for high finesse cavity absorption spectroscopy in the MIR. Cavity ring down spectroscopy (CRDS) has been performed with pulsed QCLs and was found to be limited by the intrinsic frequency chirp of the laser suppressing an efficient intensity build-up inside the cavity. Consequently the accuracy and advantage of an absolute internal absorption calibration is not achievable. A room temperature cw QCL was used in a complementary cavity enhanced absorption spectroscopy (CEAS) configuration which was equipped with different cavities of up to 1.3 m length. This spectrometer yielded path lengths of up to 4 km and a noise equivalent absorption down to 4 x 10-8 cm-1Hz-1/2. The corresponding molecular concentration detection limit (e.g. for CH4, N2O and C2H2 at 1303 cm-1/7.66 Aem) was generally below 1 x 1010 cm-3 for 1 s integration times and one order of magnitude less for 30 s integration times. The main limiting factor for achieving even higher sensitivity is the residual mode noise of the cavity. Employing a 0.5 m long cavity the achieved sensitivity was good enough for the selective measurement of trace atmospheric constituents at 2.2 mbar.

Monitoring of Gaseous Pollutants by Tunable Diode Lasers

Monitoring of Gaseous Pollutants by Tunable Diode Lasers PDF Author: R. Grisar
Publisher: Springer Science & Business Media
ISBN: 9400939914
Category : Science
Languages : en
Pages : 180

Get Book Here

Book Description
By now it has been nearly twenty years since the pioneering studies at the MIT-Lincoln Laboratories, Lexington, USA, demonstrated the unique capabilities of lead salt tunable diode lasers (TDL) for infrared absorption spectroscopy. The progress in the use of TDL instrumentation for a wide variety of scientific applications was described by a great number of papers since, however, comparatively few meetings were specifically devoted to this subject. In 1980 the conference on "High Resolution Infrared Spectroscopy Applications and Developments" at the National Bureau of Standards in Gaithersburg, USA, reviewed the state of the art of tunable diode lasers together with Fourier Transform Spectroscopy and other laser spectroscopic techniques. Three years later in 1983 the SPIE Conference in San Diego, USA, dedicated one meeting to "Tunable Diode Laser Development and Spectroscopy" Applications. It appeared appropriate after a further interval of three years to organize another meeting about this quickly advancing field. In November of 1986 an International Symposium on "Monitoring of Gaseous Pollutants by Tunable Diode Lasers" was organized by and held at the Fraunhofer-Insti tut fuer Physikalische Messtechnik in Freiburg, FRG. The main emphasis of this conference was put on the applications of TDL techniques to the solution of problems of environmental relevance : The measurement of atmospheric trace gases and the monitoring of exhaust gases from automobile and power plant stack emitters. The state of diode laser development and application of TDL instruments to scientific molecular spectroscopy were not directly subjects of the meeting.

Plasma Diagnostics

Plasma Diagnostics PDF Author: Orlando Auciello
Publisher: Academic Press
ISBN: 1483216241
Category : Science
Languages : en
Pages : 470

Get Book Here

Book Description
Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, chemists, and technical personnel in universities, industry, and national laboratories will find the book invaluable.

Advances in Optical Diagnostics Based on Tunable Diode Laser Spectroscopy

Advances in Optical Diagnostics Based on Tunable Diode Laser Spectroscopy PDF Author: Toni Laurila
Publisher:
ISBN: 9789521514807
Category :
Languages : en
Pages : 59

Get Book Here

Book Description


The Development of Diode Laser Infrared Absorption Spectroscopy as a Plasma Diagnostic

The Development of Diode Laser Infrared Absorption Spectroscopy as a Plasma Diagnostic PDF Author: Robert Leslie McClain
Publisher:
ISBN:
Category :
Languages : en
Pages : 494

Get Book Here

Book Description


High Resolution Infrared Laser Spectroscopy

High Resolution Infrared Laser Spectroscopy PDF Author: Sze-Tsen Lee
Publisher:
ISBN:
Category : High resolution spectroscopy
Languages : en
Pages : 450

Get Book Here

Book Description


Laser-Based Optical Detection of Explosives

Laser-Based Optical Detection of Explosives PDF Author: Paul M. Pellegrino
Publisher: CRC Press
ISBN: 1351831178
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understanding and appreciation of each technology’s capabilities and potential for standoff hazard detection.

Laser Spectroscopy and Laser Imaging

Laser Spectroscopy and Laser Imaging PDF Author: Helmut H. Telle
Publisher: CRC Press
ISBN: 1482256932
Category : Science
Languages : en
Pages : 1292

Get Book Here

Book Description
"a very valuable book for graduate students and researchers in the field of Laser Spectroscopy, which I can fully recommend" —Wolfgang Demtröder, Kaiserslautern University of Technology How would it be possible to provide a coherent picture of this field given all the techniques available today? The authors have taken on this daunting task in this impressive, groundbreaking text. Readers will benefit from the broad overview of basic concepts, focusing on practical scientific and real-life applications of laser spectroscopic analysis and imaging. Chapters follow a consistent structure, beginning with a succinct summary of key principles and concepts, followed by an overview of applications, advantages and pitfalls, and finally a brief discussion of seminal advances and current developments. The examples used in this text span physics and chemistry to environmental science, biology, and medicine. Focuses on practical use in the laboratory and real-world applications Covers the basic concepts, common experimental setups Highlights advantages and caveats of the techniques Concludes each chapter with a snapshot of cutting-edge advances This book is appropriate for anyone in the physical sciences, biology, or medicine looking for an introduction to laser spectroscopic and imaging methodologies. Helmut H. Telle is a full professor at the Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain. Ángel González Ureña is head of the Department of Molecular Beams and Lasers, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.

Nonthermal Plasma Chemistry and Physics

Nonthermal Plasma Chemistry and Physics PDF Author: Jurgen Meichsner
Publisher: CRC Press
ISBN: 1420059165
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
In addition to introducing the basics of plasma physics, Nonthermal Plasma Chemistry and Physics is a comprehensive presentation of recent developments in the rapidly growing field of nonthermal plasma chemistry. The book offers a detailed discussion of the fundamentals of plasma chemical reactions and modeling, nonthermal plasma sources, relevant diagnostic techniques, and selected applications. Elucidating interconnections and trends, the book focuses on basic principles and illustrations across a broad field of applications. Expert contributors address environmental aspects of plasma chemistry. The book also includes selected plasma conditions and specific applications in volume plasma chemistry and treatment of material surfaces such as plasma etching in microelectronics, chemical modification of polymer surfaces and deposition of functional thin films. Designed for students of plasma physics, Nonthermal Plasma Chemistry and Physics is a concise resource also for specialists in this and related fields of research.