Author: United States. War Production Board. Division of Information
Publisher:
ISBN:
Category : Factory management
Languages : en
Pages : 48
Book Description
Plant Efficiency
Author: United States. War Production Board
Publisher:
ISBN:
Category :
Languages : en
Pages : 44
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 44
Book Description
Plant Efficiency
Author: United States. War Production Board. Division of Information
Publisher:
ISBN:
Category : Factory management
Languages : en
Pages : 48
Book Description
Publisher:
ISBN:
Category : Factory management
Languages : en
Pages : 48
Book Description
Thermal Power Plants
Author: Xingrang Liu
Publisher: CRC Press
ISBN: 1498708234
Category : Science
Languages : en
Pages : 322
Book Description
Thermal Power Plants: Modeling, Control, and Efficiency Improvement explains how to solve highly complex industry problems regarding identification, control, and optimization through integrating conventional technologies, such as modern control technology, computational intelligence-based multiobjective identification and optimization, distributed computing, and cloud computing with computational fluid dynamics (CFD) technology. Introducing innovative methods utilized in industrial applications, explored in scientific research, and taught at leading academic universities, this book: Discusses thermal power plant processes and process modeling, energy conservation, performance audits, efficiency improvement modeling, and efficiency optimization supported by high-performance computing integrated with cloud computing Shows how to simulate fossil fuel power plant real-time processes, including boiler, turbine, and generator systems Provides downloadable source codes for use in CORBA C++, MATLAB®, Simulink®, VisSim, Comsol, ANSYS, and ANSYS Fluent modeling software Although the projects in the text focus on industry automation in electrical power engineering, the methods can be applied in other industries, such as concrete and steel production for real-time process identification, control, and optimization.
Publisher: CRC Press
ISBN: 1498708234
Category : Science
Languages : en
Pages : 322
Book Description
Thermal Power Plants: Modeling, Control, and Efficiency Improvement explains how to solve highly complex industry problems regarding identification, control, and optimization through integrating conventional technologies, such as modern control technology, computational intelligence-based multiobjective identification and optimization, distributed computing, and cloud computing with computational fluid dynamics (CFD) technology. Introducing innovative methods utilized in industrial applications, explored in scientific research, and taught at leading academic universities, this book: Discusses thermal power plant processes and process modeling, energy conservation, performance audits, efficiency improvement modeling, and efficiency optimization supported by high-performance computing integrated with cloud computing Shows how to simulate fossil fuel power plant real-time processes, including boiler, turbine, and generator systems Provides downloadable source codes for use in CORBA C++, MATLAB®, Simulink®, VisSim, Comsol, ANSYS, and ANSYS Fluent modeling software Although the projects in the text focus on industry automation in electrical power engineering, the methods can be applied in other industries, such as concrete and steel production for real-time process identification, control, and optimization.
Changing Climate and Resource use Efficiency in Plants
Author: Amitav Bhattacharya
Publisher: Academic Press
ISBN: 0128168374
Category : Science
Languages : en
Pages : 326
Book Description
Changing Climate and Resource Use Efficiency in Plants reviews the efficiencies for resource use by crop plants under different climatic conditions. This book focuses on the challenges and potential remediation methods for a variety of resource factors. Chapters deal with the effects of different climatic conditions on agriculture, radiation use efficiency under various climatic conditions, the efficiency of water and its impact on harvest production under restricted soil moisture conditions, nitrogen and phosphorus use efficiency, nitrogen use efficiency in different environmental conditions under the influence of climate change, and various aspects of improving phosphorus use efficiency. The book provides guidance for researchers engaged in plant science studies, particularly Plant/Crop Physiology, Agronomy, Plant Breeding and Molecular Breeding. In addition, it provides valuable insights for policymakers, administrators, plant-based companies and agribusiness companies. - Explores climatic effects on agriculture through radiation, water, nitrogen, and phosphorus-use efficiency - Guides the planning and research of, and recommendations for, fertilizer application for different crops under various climatic conditions - Discusses efficiency improvements for plant and molecular breeders seeking to maximize resource use
Publisher: Academic Press
ISBN: 0128168374
Category : Science
Languages : en
Pages : 326
Book Description
Changing Climate and Resource Use Efficiency in Plants reviews the efficiencies for resource use by crop plants under different climatic conditions. This book focuses on the challenges and potential remediation methods for a variety of resource factors. Chapters deal with the effects of different climatic conditions on agriculture, radiation use efficiency under various climatic conditions, the efficiency of water and its impact on harvest production under restricted soil moisture conditions, nitrogen and phosphorus use efficiency, nitrogen use efficiency in different environmental conditions under the influence of climate change, and various aspects of improving phosphorus use efficiency. The book provides guidance for researchers engaged in plant science studies, particularly Plant/Crop Physiology, Agronomy, Plant Breeding and Molecular Breeding. In addition, it provides valuable insights for policymakers, administrators, plant-based companies and agribusiness companies. - Explores climatic effects on agriculture through radiation, water, nitrogen, and phosphorus-use efficiency - Guides the planning and research of, and recommendations for, fertilizer application for different crops under various climatic conditions - Discusses efficiency improvements for plant and molecular breeders seeking to maximize resource use
Nutrient Use Efficiency in Plants
Author: Malcolm J. Hawkesford
Publisher: Springer
ISBN: 331910635X
Category : Science
Languages : en
Pages : 287
Book Description
Nutrient Use Efficiency in Plants: Concepts and Approaches is the ninth volume in the Plant Ecophysiology series. It presents a broad overview of topics related to improvement of nutrient use efficiency of crops. Nutrient use efficiency (NUE) is a measure of how well plants use the available mineral nutrients. It can be defined as yield (biomass) per unit input (fertilizer, nutrient content). NUE is a complex trait: it depends on the ability to take up the nutrients from the soil, but also on transport, storage, mobilization, usage within the plant, and even on the environment. NUE is of particular interest as a major target for crop improvement. Improvement of NUE is an essential pre-requisite for expansion of crop production into marginal lands with low nutrient availability but also a way to reduce use of inorganic fertilizer.
Publisher: Springer
ISBN: 331910635X
Category : Science
Languages : en
Pages : 287
Book Description
Nutrient Use Efficiency in Plants: Concepts and Approaches is the ninth volume in the Plant Ecophysiology series. It presents a broad overview of topics related to improvement of nutrient use efficiency of crops. Nutrient use efficiency (NUE) is a measure of how well plants use the available mineral nutrients. It can be defined as yield (biomass) per unit input (fertilizer, nutrient content). NUE is a complex trait: it depends on the ability to take up the nutrients from the soil, but also on transport, storage, mobilization, usage within the plant, and even on the environment. NUE is of particular interest as a major target for crop improvement. Improvement of NUE is an essential pre-requisite for expansion of crop production into marginal lands with low nutrient availability but also a way to reduce use of inorganic fertilizer.
Industrial Hygiene and Plant Efficiency Through Good Lighting
Author: United States Labor Standards Bureau
Publisher:
ISBN:
Category :
Languages : en
Pages : 56
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 56
Book Description
Plant Macronutrient Use Efficiency
Author: Mohammad Anwar Hossain
Publisher: Academic Press
ISBN: 0128112948
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Plant Macronutrient Use Efficiency presents an up-to-date overview of the latest research on the molecular and genetic basis of macro-nutrient use efficiency (NUE) in plants, and strategies that can be used to improve NUE and nutrient-associated stress tolerance in crop plants. Plant NUE is a measure of how efficiently plants use available nutrients and an understanding of plant NUE has the potential to help improve the use of limited natural resources and to help achieve global food security. This book presents information important for the development of crop plants with improved macro-NUE, a prerequisite to reducing production costs, expanding crop production into noncompetitive marginal lands with low nutrient resources, and for helping to prevent environmental contamination. Plant Macronutrient Use Efficiency provides a comprehensive overview of the complex mechanisms regulating macro-NUE in crop plants, which is required if plant breeders are to develop modern crop varieties that are more resilient to nutrient-associated stress. Identification of genes responsible for macro-NUE and nutrient-related stress tolerance in crop plants will help us to understand the molecular mechanisms associated with the responses of crop plants to nutrient stress. This volume contains both fundamental and advanced information, and critical commentaries useful for those in all fields of plant science research. - Provides details of molecular and genetic aspects of NUE in crop plants and model plant systems - Presents information on major macronutrients, nutrient sensing and signaling, and the molecular and genomic issues associated with primary and secondary macronutrients - Delivers information on how molecular genetic information associated with NUE can be used to develop plant breeding programs - Includes contributions from world-leading plant nutrition research groups
Publisher: Academic Press
ISBN: 0128112948
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Plant Macronutrient Use Efficiency presents an up-to-date overview of the latest research on the molecular and genetic basis of macro-nutrient use efficiency (NUE) in plants, and strategies that can be used to improve NUE and nutrient-associated stress tolerance in crop plants. Plant NUE is a measure of how efficiently plants use available nutrients and an understanding of plant NUE has the potential to help improve the use of limited natural resources and to help achieve global food security. This book presents information important for the development of crop plants with improved macro-NUE, a prerequisite to reducing production costs, expanding crop production into noncompetitive marginal lands with low nutrient resources, and for helping to prevent environmental contamination. Plant Macronutrient Use Efficiency provides a comprehensive overview of the complex mechanisms regulating macro-NUE in crop plants, which is required if plant breeders are to develop modern crop varieties that are more resilient to nutrient-associated stress. Identification of genes responsible for macro-NUE and nutrient-related stress tolerance in crop plants will help us to understand the molecular mechanisms associated with the responses of crop plants to nutrient stress. This volume contains both fundamental and advanced information, and critical commentaries useful for those in all fields of plant science research. - Provides details of molecular and genetic aspects of NUE in crop plants and model plant systems - Presents information on major macronutrients, nutrient sensing and signaling, and the molecular and genomic issues associated with primary and secondary macronutrients - Delivers information on how molecular genetic information associated with NUE can be used to develop plant breeding programs - Includes contributions from world-leading plant nutrition research groups
Energy Efficiency
Author: Zoran Morvaj
Publisher: BoD – Books on Demand
ISBN: 9535103407
Category : Technology & Engineering
Languages : en
Pages : 360
Book Description
Energy efficiency is finally a common sense term. Nowadays almost everyone knows that using energy more efficiently saves money, reduces the emissions of greenhouse gasses and lowers dependence on imported fossil fuels. We are living in a fossil age at the peak of its strength. Competition for securing resources for fuelling economic development is increasing, price of fuels will increase while availability of would gradually decline. Small nations will be first to suffer if caught unprepared in the midst of the struggle for resources among the large players. Here it is where energy efficiency has a potential to lead toward the natural next step - transition away from imported fossil fuels! Someone said that the only thing more harmful then fossil fuel is fossilized thinking. It is our sincere hope that some of chapters in this book will influence you to take a fresh look at the transition to low carbon economy and the role that energy efficiency can play in that process.
Publisher: BoD – Books on Demand
ISBN: 9535103407
Category : Technology & Engineering
Languages : en
Pages : 360
Book Description
Energy efficiency is finally a common sense term. Nowadays almost everyone knows that using energy more efficiently saves money, reduces the emissions of greenhouse gasses and lowers dependence on imported fossil fuels. We are living in a fossil age at the peak of its strength. Competition for securing resources for fuelling economic development is increasing, price of fuels will increase while availability of would gradually decline. Small nations will be first to suffer if caught unprepared in the midst of the struggle for resources among the large players. Here it is where energy efficiency has a potential to lead toward the natural next step - transition away from imported fossil fuels! Someone said that the only thing more harmful then fossil fuel is fossilized thinking. It is our sincere hope that some of chapters in this book will influence you to take a fresh look at the transition to low carbon economy and the role that energy efficiency can play in that process.
Recent Advances on Nitrogen Use Efficiency in Crop Plants and Climatic Challenges
Author: Hamada AbdElgawad
Publisher: Frontiers Media SA
ISBN: 2832532470
Category : Science
Languages : en
Pages : 423
Book Description
Nitrogen (N) is a mineral nutrient that is essential for the normal growth and development of plants that is required in the highest quantity. It is an element of nucleic acids, proteins, and photosynthetic metabolites, therefore crucial for crop growth and metabolic processes. Recently, it was estimated that N fertilizers could meet the 48% demand of the world’s population. However, overuse and misuse of N fertilizers raised environmental concerns associated with N losses by nitrous oxide (N2O) emissions, ammonia (NH3) volatilization, and nitrate (NO3−) leaching. For instance, NH3 is a pollutant in the atmosphere, N2O is a greenhouse gas that has a warming potential 298 times higher than CO2 and contributes to ozone depletion, and NO3− causes eutrophication of water bodies. Agricultural practices account for about 90% of NH3 and 70% of N2O anthropogenic emissions worldwide. The efficient use of N chemical fertilizers can be attained through cultural and agronomic practices. Nitrogen use efficiency (NUE) is an important trait that has been studied for decades in different crops. The grain production or economic return from the per unit supply of N fertilizer simply explained the NUE. Several definitions were suggested by different researchers. NUE can be defined as the product of N uptake efficiency (NUpE) and N utilization efficiency (NUtE). An increase in NUE increases the yield, biomass, quality, and quantity of crops. N is generally applied as chemical fertilizer to the soil, whereas a small amount is added to some crops like grain legumes through the fixation process. On the other hand, crop plants take N through the root system in the form of nitrate or ammonium which is thereby used in different metabolic processes. A number of studies have been conducted to increase the NUE in different crops and it has been indicated that NUE can be improved by agronomic, physiological, biochemical, breeding as well as molecular approaches. Nitrogen is the main limiting nutrient after carbon, hydrogen, and oxygen for the photosynthetic process, phyto-hormonal and proteomic changes, and the growth-development of plants to complete their lifecycle. Excessive and inefficient use of N fertilizer results in enhanced crop production costs and atmospheric pollution. Atmospheric nitrogen (71%) in the molecular form is not available for the plants. For the world's sustainable food production and atmospheric benefits, there is an urgent need to upgrade nitrogen use efficiency in the agricultural farming system. Nitrogen losses are too high, due to excess amount, low plant population, poor application methods, etc., which can go up to 70% of total available nitrogen. These losses can be minimized up to 15–30% by adopting improved agronomic approaches such as optimal dosage of nitrogen, application of N by using canopy sensors, maintaining plant population, drip fertigation, and legume-based intercropping. Therefore, the major concern of modern days is to save economic resources without sacrificing farm yield as well as the safety of the global environment, i.e. greenhouse gas emissions, ammonium volatilization, and nitrate leaching.
Publisher: Frontiers Media SA
ISBN: 2832532470
Category : Science
Languages : en
Pages : 423
Book Description
Nitrogen (N) is a mineral nutrient that is essential for the normal growth and development of plants that is required in the highest quantity. It is an element of nucleic acids, proteins, and photosynthetic metabolites, therefore crucial for crop growth and metabolic processes. Recently, it was estimated that N fertilizers could meet the 48% demand of the world’s population. However, overuse and misuse of N fertilizers raised environmental concerns associated with N losses by nitrous oxide (N2O) emissions, ammonia (NH3) volatilization, and nitrate (NO3−) leaching. For instance, NH3 is a pollutant in the atmosphere, N2O is a greenhouse gas that has a warming potential 298 times higher than CO2 and contributes to ozone depletion, and NO3− causes eutrophication of water bodies. Agricultural practices account for about 90% of NH3 and 70% of N2O anthropogenic emissions worldwide. The efficient use of N chemical fertilizers can be attained through cultural and agronomic practices. Nitrogen use efficiency (NUE) is an important trait that has been studied for decades in different crops. The grain production or economic return from the per unit supply of N fertilizer simply explained the NUE. Several definitions were suggested by different researchers. NUE can be defined as the product of N uptake efficiency (NUpE) and N utilization efficiency (NUtE). An increase in NUE increases the yield, biomass, quality, and quantity of crops. N is generally applied as chemical fertilizer to the soil, whereas a small amount is added to some crops like grain legumes through the fixation process. On the other hand, crop plants take N through the root system in the form of nitrate or ammonium which is thereby used in different metabolic processes. A number of studies have been conducted to increase the NUE in different crops and it has been indicated that NUE can be improved by agronomic, physiological, biochemical, breeding as well as molecular approaches. Nitrogen is the main limiting nutrient after carbon, hydrogen, and oxygen for the photosynthetic process, phyto-hormonal and proteomic changes, and the growth-development of plants to complete their lifecycle. Excessive and inefficient use of N fertilizer results in enhanced crop production costs and atmospheric pollution. Atmospheric nitrogen (71%) in the molecular form is not available for the plants. For the world's sustainable food production and atmospheric benefits, there is an urgent need to upgrade nitrogen use efficiency in the agricultural farming system. Nitrogen losses are too high, due to excess amount, low plant population, poor application methods, etc., which can go up to 70% of total available nitrogen. These losses can be minimized up to 15–30% by adopting improved agronomic approaches such as optimal dosage of nitrogen, application of N by using canopy sensors, maintaining plant population, drip fertigation, and legume-based intercropping. Therefore, the major concern of modern days is to save economic resources without sacrificing farm yield as well as the safety of the global environment, i.e. greenhouse gas emissions, ammonium volatilization, and nitrate leaching.
Education and the Cult of Efficiency
Author: Raymond E. Callahan
Publisher: University of Chicago Press
ISBN: 022621690X
Category : History
Languages : en
Pages : 287
Book Description
Raymond Callahan's lively study exposes the alarming lengths to which school administrators went, particularly in the period from 1910 to 1930, in sacrificing educational goals to the demands of business procedures. He suggests that even today the question still asked is: "How can we operate our schools?" Society has not yet learned to ask: "How can we provide an excellent education for our children?"
Publisher: University of Chicago Press
ISBN: 022621690X
Category : History
Languages : en
Pages : 287
Book Description
Raymond Callahan's lively study exposes the alarming lengths to which school administrators went, particularly in the period from 1910 to 1930, in sacrificing educational goals to the demands of business procedures. He suggests that even today the question still asked is: "How can we operate our schools?" Society has not yet learned to ask: "How can we provide an excellent education for our children?"