Author: Herbert Ellsworth Slaught
Publisher:
ISBN:
Category : Geometry, Plane
Languages : en
Pages : 304
Book Description
Plane Geometry
Author: Herbert Ellsworth Slaught
Publisher:
ISBN:
Category : Geometry, Plane
Languages : en
Pages : 304
Book Description
Publisher:
ISBN:
Category : Geometry, Plane
Languages : en
Pages : 304
Book Description
The Advanced Geometry of Plane Curves and Their Applications
Author: C. Zwikker
Publisher: Courier Corporation
ISBN: 0486153436
Category : Mathematics
Languages : en
Pages : 316
Book Description
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.
Publisher: Courier Corporation
ISBN: 0486153436
Category : Mathematics
Languages : en
Pages : 316
Book Description
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.
Geometry in Problems
Author: Alexander Shen
Publisher: American Mathematical Soc.
ISBN: 1470419211
Category : Juvenile Nonfiction
Languages : en
Pages : 229
Book Description
Classical Euclidean geometry, with all its triangles, circles, and inscribed angles, remains an excellent playground for high-school mathematics students, even if it looks outdated from the professional mathematician's viewpoint. It provides an excellent choice of elegant and natural problems that can be used in a course based on problem solving. The book contains more than 750 (mostly) easy but nontrivial problems in all areas of plane geometry and solutions for most of them, as well as additional problems for self-study (some with hints). Each chapter also provides concise reminders of basic notions used in the chapter, so the book is almost self-contained (although a good textbook and competent teacher are always recommended). More than 450 figures illustrate the problems and their solutions. The book can be used by motivated high-school students, as well as their teachers and parents. After solving the problems in the book the student will have mastered the main notions and methods of plane geometry and, hopefully, will have had fun in the process. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. What a joy! Shen's ``Geometry in Problems'' is a gift to the school teaching world. Beautifully organized by content topic, Shen has collated a vast collection of fresh, innovative, and highly classroom-relevant questions, problems, and challenges sure to enliven the minds and clever thinking of all those studying Euclidean geometry for the first time. This book is a spectacular resource for educators and students alike. Users will not only sharpen their mathematical understanding of specific topics but will also sharpen their problem-solving wits and come to truly own the mathematics explored. Also, Math Circle leaders can draw much inspiration for session ideas from the material presented in this book. --James Tanton, Mathematician-at-Large, Mathematical Association of America We learn mathematics best by doing mathematics. The author of this book recognizes this principle. He invites the reader to participate in learning plane geometry through carefully chosen problems, with brief explanations leading to much activity. The problems in the book are sometimes deep and subtle: almost everyone can do some of them, and almost no one can do all. The reader comes away with a view of geometry refreshed by experience. --Mark Saul, Director of Competitions, Mathematical Association of America
Publisher: American Mathematical Soc.
ISBN: 1470419211
Category : Juvenile Nonfiction
Languages : en
Pages : 229
Book Description
Classical Euclidean geometry, with all its triangles, circles, and inscribed angles, remains an excellent playground for high-school mathematics students, even if it looks outdated from the professional mathematician's viewpoint. It provides an excellent choice of elegant and natural problems that can be used in a course based on problem solving. The book contains more than 750 (mostly) easy but nontrivial problems in all areas of plane geometry and solutions for most of them, as well as additional problems for self-study (some with hints). Each chapter also provides concise reminders of basic notions used in the chapter, so the book is almost self-contained (although a good textbook and competent teacher are always recommended). More than 450 figures illustrate the problems and their solutions. The book can be used by motivated high-school students, as well as their teachers and parents. After solving the problems in the book the student will have mastered the main notions and methods of plane geometry and, hopefully, will have had fun in the process. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. What a joy! Shen's ``Geometry in Problems'' is a gift to the school teaching world. Beautifully organized by content topic, Shen has collated a vast collection of fresh, innovative, and highly classroom-relevant questions, problems, and challenges sure to enliven the minds and clever thinking of all those studying Euclidean geometry for the first time. This book is a spectacular resource for educators and students alike. Users will not only sharpen their mathematical understanding of specific topics but will also sharpen their problem-solving wits and come to truly own the mathematics explored. Also, Math Circle leaders can draw much inspiration for session ideas from the material presented in this book. --James Tanton, Mathematician-at-Large, Mathematical Association of America We learn mathematics best by doing mathematics. The author of this book recognizes this principle. He invites the reader to participate in learning plane geometry through carefully chosen problems, with brief explanations leading to much activity. The problems in the book are sometimes deep and subtle: almost everyone can do some of them, and almost no one can do all. The reader comes away with a view of geometry refreshed by experience. --Mark Saul, Director of Competitions, Mathematical Association of America
Kiselev's Geometry
Author: Andreĭ Petrovich Kiselev
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Plane and Solid Geometry with Problems and Applications (Classic Reprint)
Author: H. E. Slaught
Publisher: Forgotten Books
ISBN: 9780331635126
Category : Mathematics
Languages : en
Pages : 484
Book Description
Excerpt from Plane and Solid Geometry With Problems and Applications Some of these terms, such as point, line, plane, are here used without being defined in a strictly logical sense. Their meaning is made clear by description and by con crete illustrations like the following. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Publisher: Forgotten Books
ISBN: 9780331635126
Category : Mathematics
Languages : en
Pages : 484
Book Description
Excerpt from Plane and Solid Geometry With Problems and Applications Some of these terms, such as point, line, plane, are here used without being defined in a strictly logical sense. Their meaning is made clear by description and by con crete illustrations like the following. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Solid Geometry
Author: H. E. Slaught
Publisher: Forgotten Books
ISBN: 9781528351690
Category : Mathematics
Languages : en
Pages : 200
Book Description
Excerpt from Solid Geometry: With Problems and Applications The important features by which the Solid Geometry seeks to accomplish the two main purposes stated in the preface of the Plane Geometry are. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Publisher: Forgotten Books
ISBN: 9781528351690
Category : Mathematics
Languages : en
Pages : 200
Book Description
Excerpt from Solid Geometry: With Problems and Applications The important features by which the Solid Geometry seeks to accomplish the two main purposes stated in the preface of the Plane Geometry are. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Problems in Analytic Geometry
Author: D Kletenik
Publisher: The Minerva Group, Inc.
ISBN: 0898757142
Category : Geometry, Analytic
Languages : en
Pages : 300
Book Description
A translation of a Soviet text covering plane analytic geometry and solid analytic geometry.
Publisher: The Minerva Group, Inc.
ISBN: 0898757142
Category : Geometry, Analytic
Languages : en
Pages : 300
Book Description
A translation of a Soviet text covering plane analytic geometry and solid analytic geometry.
Foundations of Plane Geometry
Author: Harvey I. Blau
Publisher:
ISBN: 9780130479549
Category : Mathematics
Languages : en
Pages : 0
Book Description
Ideal for users who may have little previous experience with abstraction and proof, this book provides a rigorous and unified--yet straightforward and accessible --exposition of the foundations of Euclidean, hyperbolic, and spherical geometry. Unique in approach, it combines an extended theme--the study of a generalized absolute plane from axioms through classification into the three fundamental classical planes--with a leisurely development that allows ample time for mathematical growth. It is purposefully structured to facilitate the development of analytic and reasoning skills and to promote an awareness of the depth, power, and subtlety of the axiomatic method in general, and of Euclidean and non-Euclidean plane geometry in particular. Focus on one main topic--The axiomatic development of the absolute plane--which is pursued through a classification into Euclidean, hyperbolic, and spherical planes. Presents specific models such as the sphere, the Klein-Betrami hyperbolic model, and the "gap" plane. Gradually presents axioms for absolute plane geometry.
Publisher:
ISBN: 9780130479549
Category : Mathematics
Languages : en
Pages : 0
Book Description
Ideal for users who may have little previous experience with abstraction and proof, this book provides a rigorous and unified--yet straightforward and accessible --exposition of the foundations of Euclidean, hyperbolic, and spherical geometry. Unique in approach, it combines an extended theme--the study of a generalized absolute plane from axioms through classification into the three fundamental classical planes--with a leisurely development that allows ample time for mathematical growth. It is purposefully structured to facilitate the development of analytic and reasoning skills and to promote an awareness of the depth, power, and subtlety of the axiomatic method in general, and of Euclidean and non-Euclidean plane geometry in particular. Focus on one main topic--The axiomatic development of the absolute plane--which is pursued through a classification into Euclidean, hyperbolic, and spherical planes. Presents specific models such as the sphere, the Klein-Betrami hyperbolic model, and the "gap" plane. Gradually presents axioms for absolute plane geometry.
Lectures on Curves, Surfaces and Projective Varieties
Author: Mauro Beltrametti
Publisher: European Mathematical Society
ISBN: 9783037190647
Category : Mathematics
Languages : en
Pages : 512
Book Description
This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Publisher: European Mathematical Society
ISBN: 9783037190647
Category : Mathematics
Languages : en
Pages : 512
Book Description
This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Geometry Civilized
Author: J. L. Heilbron
Publisher: Oxford University Press
ISBN: 9780198506904
Category : History
Languages : en
Pages : 344
Book Description
This lavishly illustrated book provides an unusually accessible approach to geometry by placing it in historical context. With concise discussions and carefully chosen illustrations the author brings the material to life by showing what problems motivated early geometers throughout the world. Geometry Civilized covers classical plane geometry, emphasizing the methods of Euclid but also drawing on advances made in China and India. It includes a wide range of problems, solutions, and illustrations, as well as a chapter on trigonometry, and prepares its readers for the study of solid geometry and conic sections.
Publisher: Oxford University Press
ISBN: 9780198506904
Category : History
Languages : en
Pages : 344
Book Description
This lavishly illustrated book provides an unusually accessible approach to geometry by placing it in historical context. With concise discussions and carefully chosen illustrations the author brings the material to life by showing what problems motivated early geometers throughout the world. Geometry Civilized covers classical plane geometry, emphasizing the methods of Euclid but also drawing on advances made in China and India. It includes a wide range of problems, solutions, and illustrations, as well as a chapter on trigonometry, and prepares its readers for the study of solid geometry and conic sections.