Author: Colin Ratledge
Publisher: Springer Science & Business Media
ISBN: 9401134529
Category : Science
Languages : en
Pages : 146
Book Description
Physiology of Biodegradative Microorganisms
Author: Colin Ratledge
Publisher: Springer Science & Business Media
ISBN: 9401134529
Category : Science
Languages : en
Pages : 146
Book Description
Publisher: Springer Science & Business Media
ISBN: 9401134529
Category : Science
Languages : en
Pages : 146
Book Description
Microbial Biodegradation and Bioremediation
Author: Surajit Das
Publisher: Elsevier
ISBN: 0128004827
Category : Science
Languages : en
Pages : 641
Book Description
Microbial Biodegradation and Bioremediation brings together experts in relevant fields to describe the successful application of microbes and their derivatives for bioremediation of potentially toxic and relatively novel compounds. This single-source reference encompasses all categories of pollutants and their applications in a convenient, comprehensive package. Our natural biodiversity and environment is in danger due to the release of continuously emerging potential pollutants by anthropogenic activities. Though many attempts have been made to eradicate and remediate these noxious elements, every day thousands of xenobiotics of relatively new entities emerge, thus worsening the situation. Primitive microorganisms are highly adaptable to toxic environments, and can reduce the load of toxic elements by their successful transformation and remediation. - Describes many novel approaches of microbial bioremediation including genetic engineering, metagenomics, microbial fuel cell technology, biosurfactants and biofilm-based bioremediation - Introduces relatively new hazardous elements and their bioremediation practices including oil spills, military waste water, greenhouse gases, polythene wastes, and more - Provides the most advanced techniques in the field of bioremediation, including insilico approach, microbes as pollution indicators, use of bioreactors, techniques of pollution monitoring, and more
Publisher: Elsevier
ISBN: 0128004827
Category : Science
Languages : en
Pages : 641
Book Description
Microbial Biodegradation and Bioremediation brings together experts in relevant fields to describe the successful application of microbes and their derivatives for bioremediation of potentially toxic and relatively novel compounds. This single-source reference encompasses all categories of pollutants and their applications in a convenient, comprehensive package. Our natural biodiversity and environment is in danger due to the release of continuously emerging potential pollutants by anthropogenic activities. Though many attempts have been made to eradicate and remediate these noxious elements, every day thousands of xenobiotics of relatively new entities emerge, thus worsening the situation. Primitive microorganisms are highly adaptable to toxic environments, and can reduce the load of toxic elements by their successful transformation and remediation. - Describes many novel approaches of microbial bioremediation including genetic engineering, metagenomics, microbial fuel cell technology, biosurfactants and biofilm-based bioremediation - Introduces relatively new hazardous elements and their bioremediation practices including oil spills, military waste water, greenhouse gases, polythene wastes, and more - Provides the most advanced techniques in the field of bioremediation, including insilico approach, microbes as pollution indicators, use of bioreactors, techniques of pollution monitoring, and more
Advances in Biodegradation and Bioremediation of Industrial Waste
Author: Ram Chandra
Publisher: CRC Press
ISBN: 1498700551
Category : Science
Languages : en
Pages : 442
Book Description
Addresses a Global Challenge to Sustainable DevelopmentAdvances in Biodegradation and Bioremediation of Industrial Waste examines and compiles the latest information on the industrial waste biodegradation process and provides a comprehensive review. Dedicated to reducing pollutants generated by agriculturally contaminated soil, and plastic waste fr
Publisher: CRC Press
ISBN: 1498700551
Category : Science
Languages : en
Pages : 442
Book Description
Addresses a Global Challenge to Sustainable DevelopmentAdvances in Biodegradation and Bioremediation of Industrial Waste examines and compiles the latest information on the industrial waste biodegradation process and provides a comprehensive review. Dedicated to reducing pollutants generated by agriculturally contaminated soil, and plastic waste fr
Biosynthesis and Biodegradation of Wood Components
Author: Takayoshi Higuchi
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 704
Book Description
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 704
Book Description
Emerging Technologies in Environmental Bioremediation
Author: Maulin P. Shah
Publisher: Elsevier
ISBN: 9780128198605
Category : Technology & Engineering
Languages : en
Pages : 462
Book Description
Environmental pollution increases day by day due to increases in population, industrialization and urbanization, posing a threat to human health. The risk of adverse effects on health and on the environment caused by pollution has driven international efforts to combat pollutants. Bioremediation is the most effective innovative technology that uses live naturally-occurring microorganisms to degrade environmental pollutants and prevent contamination. Emerging Technologies in Environmental Bioremediation introduces emerging bioremediation technologies for the treatment and management of industrial wastes and other environmental pollutants for the sake of environmental sustainability. Emerging bioremediation approaches such as nano-bioremediation technology, electro-bioremediation technology, microbial fuel cell technology, Modified Ludzack-Ettinger Process, Modified Activated Sludge Process, and phytotechnologies for the remediation of industrial wastes/pollutants are discussed in a comprehensive manner not found in other books. Furthermore, the book includes updated information as well as future directions for research in the field of bioremediation of industrial wastes. This book is useful to students, researchers, scientists and professionals in the field of microbiology and biotechnology, Bio (chemical) engineers, environmental researchers, eco-toxicology, environmental remediation and waste managers, who aspire to work on the biodegradation and bioremediation of industrial wastes/environmental pollutants for environmental sustainability. Includes the recovery of resources from wastewater Describes the importance of microorganisms in environmental bioremediation technologies Points out the reuse of treated wastewater through emerging technologies Pays attention to the occurrence of novel micro-pollutants Emphasizes the role of nanotechnology in pollutant bioremediation
Publisher: Elsevier
ISBN: 9780128198605
Category : Technology & Engineering
Languages : en
Pages : 462
Book Description
Environmental pollution increases day by day due to increases in population, industrialization and urbanization, posing a threat to human health. The risk of adverse effects on health and on the environment caused by pollution has driven international efforts to combat pollutants. Bioremediation is the most effective innovative technology that uses live naturally-occurring microorganisms to degrade environmental pollutants and prevent contamination. Emerging Technologies in Environmental Bioremediation introduces emerging bioremediation technologies for the treatment and management of industrial wastes and other environmental pollutants for the sake of environmental sustainability. Emerging bioremediation approaches such as nano-bioremediation technology, electro-bioremediation technology, microbial fuel cell technology, Modified Ludzack-Ettinger Process, Modified Activated Sludge Process, and phytotechnologies for the remediation of industrial wastes/pollutants are discussed in a comprehensive manner not found in other books. Furthermore, the book includes updated information as well as future directions for research in the field of bioremediation of industrial wastes. This book is useful to students, researchers, scientists and professionals in the field of microbiology and biotechnology, Bio (chemical) engineers, environmental researchers, eco-toxicology, environmental remediation and waste managers, who aspire to work on the biodegradation and bioremediation of industrial wastes/environmental pollutants for environmental sustainability. Includes the recovery of resources from wastewater Describes the importance of microorganisms in environmental bioremediation technologies Points out the reuse of treated wastewater through emerging technologies Pays attention to the occurrence of novel micro-pollutants Emphasizes the role of nanotechnology in pollutant bioremediation
Bioremediation for Environmental Sustainability
Author: Gaurav Saxena
Publisher: Elsevier
ISBN: 0128205253
Category : Technology & Engineering
Languages : en
Pages : 691
Book Description
Bioremediation for Environmental Sustainability: Toxicity, Mechanisms of Contaminants Degradation, Detoxification and Challenges introduces pollution and toxicity profiles of various organic and inorganic contaminants, including mechanisms of toxicity, degradation, and detoxification by microbes and plants, and their bioremediation approaches for environmental sustainability. The book also covers many advanced technologies in the field of bioremediation and phytoremediation, including electro-bioremediation, microbial fuel cells, nano-bioremediation, constructed wetlands, phytotechnologies, and many more, which are lacking in other competitive titles existing in the market. The book includes updated information, as well as future directions for research, in the field of bioremediation of industrial wastes. This book is a reference for students, researchers, scientists, and professionals in the fields of microbiology, biotechnology, environmental sciences, eco-toxicology, environmental remediation, and waste management, especially those who aspire to work on the biodegradation and bioremediation of industrial wastes and environmental pollutants for environmental sustainability. Environmental safety and sustainability with rapid industrialization is one of the major challenges worldwide. Industries are the key drivers in the world economy, but these are also the major polluters due to discharge of potentially toxic and hazardous wastes containing various organic and inorganic pollutants, which cause environmental pollution and severe toxic effects in living beings. - Introduces pollution and toxicity profiles of environmental contaminants and industrial wastes, including oil refinery wastewater, distillery wastewater, tannery wastewater, textile wastewater, mine tailing wastes, plastic wastes, and more - Describes underlying mechanisms of degradation and detoxification of emerging organic and inorganic contaminants with enzymatic roles - Focuses on recent advances and challenges in bioremediation and phytoremediation, including microbial enzymes, biosurfactants, microalgae, biofilm, archaea, genetically engineered organisms, and more - Describes how microbes and plants can be successfully applied for the remediation of potentially toxic industrial wastes and chemical pollutants to protect the environment and public health
Publisher: Elsevier
ISBN: 0128205253
Category : Technology & Engineering
Languages : en
Pages : 691
Book Description
Bioremediation for Environmental Sustainability: Toxicity, Mechanisms of Contaminants Degradation, Detoxification and Challenges introduces pollution and toxicity profiles of various organic and inorganic contaminants, including mechanisms of toxicity, degradation, and detoxification by microbes and plants, and their bioremediation approaches for environmental sustainability. The book also covers many advanced technologies in the field of bioremediation and phytoremediation, including electro-bioremediation, microbial fuel cells, nano-bioremediation, constructed wetlands, phytotechnologies, and many more, which are lacking in other competitive titles existing in the market. The book includes updated information, as well as future directions for research, in the field of bioremediation of industrial wastes. This book is a reference for students, researchers, scientists, and professionals in the fields of microbiology, biotechnology, environmental sciences, eco-toxicology, environmental remediation, and waste management, especially those who aspire to work on the biodegradation and bioremediation of industrial wastes and environmental pollutants for environmental sustainability. Environmental safety and sustainability with rapid industrialization is one of the major challenges worldwide. Industries are the key drivers in the world economy, but these are also the major polluters due to discharge of potentially toxic and hazardous wastes containing various organic and inorganic pollutants, which cause environmental pollution and severe toxic effects in living beings. - Introduces pollution and toxicity profiles of environmental contaminants and industrial wastes, including oil refinery wastewater, distillery wastewater, tannery wastewater, textile wastewater, mine tailing wastes, plastic wastes, and more - Describes underlying mechanisms of degradation and detoxification of emerging organic and inorganic contaminants with enzymatic roles - Focuses on recent advances and challenges in bioremediation and phytoremediation, including microbial enzymes, biosurfactants, microalgae, biofilm, archaea, genetically engineered organisms, and more - Describes how microbes and plants can be successfully applied for the remediation of potentially toxic industrial wastes and chemical pollutants to protect the environment and public health
Biochemistry of microbial degradation
Author: Colin Ratledge
Publisher: Springer
ISBN: 9789401047388
Category : Science
Languages : en
Pages : 590
Book Description
Life on the planet depends on microbial activity. The recycling of carbon, nitrogen, sulphur, oxygen, phosphate and all the other elements that constitute living matter are continuously in flux: microorganisms participate in key steps in these processes and without them life would cease within a few short years. The comparatively recent advent of man-made chemicals has now challenged the environment: where degradation does not occur, accumulation must perforce take place. Surprisingly though, even the most recalcitrant of molecules are gradually broken down and very few materials are truly impervious to microbial attack. Microorganisms, by their rapid growth rates, have the most rapid turn-over of their DNA of all living cells. Consequently they can evolve altered genes and therefore produce novel enzymes for handling "foreign" compounds - the xenobiotics - in a manner not seen with such effect in other organisms. Evolution, with the production of micro-organisms able to degrade molecules hitherto intractable to breakdown, is therefore a continuing event. Now, through the agency of genetic manipulation, it is possible to accelerate this process of natural evolution in a very directed manner. The time-scale before a new microorganism emerges that can utilize a recalcitrant molecule has now been considerably shortened by the application of well-understood genetic principles into microbiology. However, before these principles can be successfully used, it is essential that we understand the mechanism by which molecules are degraded, otherwise we shall not know where best to direct these efforts.
Publisher: Springer
ISBN: 9789401047388
Category : Science
Languages : en
Pages : 590
Book Description
Life on the planet depends on microbial activity. The recycling of carbon, nitrogen, sulphur, oxygen, phosphate and all the other elements that constitute living matter are continuously in flux: microorganisms participate in key steps in these processes and without them life would cease within a few short years. The comparatively recent advent of man-made chemicals has now challenged the environment: where degradation does not occur, accumulation must perforce take place. Surprisingly though, even the most recalcitrant of molecules are gradually broken down and very few materials are truly impervious to microbial attack. Microorganisms, by their rapid growth rates, have the most rapid turn-over of their DNA of all living cells. Consequently they can evolve altered genes and therefore produce novel enzymes for handling "foreign" compounds - the xenobiotics - in a manner not seen with such effect in other organisms. Evolution, with the production of micro-organisms able to degrade molecules hitherto intractable to breakdown, is therefore a continuing event. Now, through the agency of genetic manipulation, it is possible to accelerate this process of natural evolution in a very directed manner. The time-scale before a new microorganism emerges that can utilize a recalcitrant molecule has now been considerably shortened by the application of well-understood genetic principles into microbiology. However, before these principles can be successfully used, it is essential that we understand the mechanism by which molecules are degraded, otherwise we shall not know where best to direct these efforts.
Microbial Biodegradation
Author: Eduardo Díaz
Publisher:
ISBN: 9781913652203
Category : Biodegradation
Languages : en
Pages :
Book Description
In this timely book expert international authors critically review all of the most important topics in this exciting field. Although other books covering this are currently available, this book is unique in that it is the first to review the area from a molecular biology and genomics perspective. Topics covered include: aerobic and anaerobic biodegradation of aromatic compounds, molecular detection methods (e.g. microautoradiography, mRNA analyses, etc.), genome-based predictive modelling, elucidation of regulatory networks, bioavailability, chemotaxis and transport issues, functional genomic.
Publisher:
ISBN: 9781913652203
Category : Biodegradation
Languages : en
Pages :
Book Description
In this timely book expert international authors critically review all of the most important topics in this exciting field. Although other books covering this are currently available, this book is unique in that it is the first to review the area from a molecular biology and genomics perspective. Topics covered include: aerobic and anaerobic biodegradation of aromatic compounds, molecular detection methods (e.g. microautoradiography, mRNA analyses, etc.), genome-based predictive modelling, elucidation of regulatory networks, bioavailability, chemotaxis and transport issues, functional genomic.
Ground-Water Microbiology and Geochemistry
Author: Frank Chapelle
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 458
Book Description
The difficult struggle to protect our valuable ground-water resources necessarily involves scientists and engineers from many disciplines. To prevail in this effort, these practitioners—including microbiologists, hydrogeologists, geoscientists, and environmental engineers—must have a common understanding of essential ground-water quality issues and problems. That includes a basic grasp of how microorganisms and microbial processes affect the chemistry of ground water in both pristine and chemically stressed aquifer systems. Ground-Water Microbiology and Geochemistry marks the first attempt to bridge the historical lack of communication among these disciplines by detailing—in language that cuts across specialties—the impact of microorganisms and microbial processes on ground-water systems. To bring these diverse practitioners together, the book has been organized in three parts, with each section addressing the information needs of specific disciplines. The first six chapters of Ground-Water Microbiology and Geochemistry provide an overview of microbiology that’s geared to geoscientists who may lack formal training in the field. Here, the book systematically covers the kinds of microorganisms found in subsurface environments, focusing on their growth, metabolism, genetics, and ecology. The second part of the book, which covers four chapters, speaks both to geoscientists and to microbiologists. It offers a hydrologic perspective on how microbial processes affect groundwater geochemistry in pristine systems—an important topic for geochemists since most ground-water reservoirs have not been chemically affected by human activities, and naturally occurring microbial processes have major impacts on water quality. At the same time, Part Two introduces microbiologists to the different classes of ground-water systems, and gives an overview of techniques for sampling subsurface environments. In addition, microbiologists gain an understanding of biogeochemical cycling in ground-water systems—in coverage that’s unique to this book—and of the classic geochemical modeling techniques that are used to study microbial processes. The final three chapters of Ground-Water Microbiology and Geochemistry focus in on microbial processes in contaminated ground-water systems—a topic of central concern to environmental scientists. In this concluding section, microbiologists see how degradation processes depend upon the hydrologic and geochemical environments within which they operate. Having achieved a basic knowledge of microbiological and biochemical concepts from the earlier chapters, geoscientists are fully prepared for this treatment of microbial acclimation and the biodegradation of petroleum hydrocarbons and halogenated compounds. Ground-Water Microbiology and Geochemistry is as graphically impressive as it is far reaching. High-quality, computer-generated illustrations, of particular appeal to visually oriented geoscientists, can be found throughout the book. Equally important is the book’s unusually comprehensive bibliography, which, like the text itself, spans the relevant science and engineering disciplines. The importance of Ground-Water Microbiology and Geochemistry to geoscientists, hydrologists, and environmental scientists has been amply documented. The book should also be required reading for water planners and lawyers involved in environmental issues. It will also serve as a compelling text in upper undergraduate and graduate courses in ground-water chemistry.
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 458
Book Description
The difficult struggle to protect our valuable ground-water resources necessarily involves scientists and engineers from many disciplines. To prevail in this effort, these practitioners—including microbiologists, hydrogeologists, geoscientists, and environmental engineers—must have a common understanding of essential ground-water quality issues and problems. That includes a basic grasp of how microorganisms and microbial processes affect the chemistry of ground water in both pristine and chemically stressed aquifer systems. Ground-Water Microbiology and Geochemistry marks the first attempt to bridge the historical lack of communication among these disciplines by detailing—in language that cuts across specialties—the impact of microorganisms and microbial processes on ground-water systems. To bring these diverse practitioners together, the book has been organized in three parts, with each section addressing the information needs of specific disciplines. The first six chapters of Ground-Water Microbiology and Geochemistry provide an overview of microbiology that’s geared to geoscientists who may lack formal training in the field. Here, the book systematically covers the kinds of microorganisms found in subsurface environments, focusing on their growth, metabolism, genetics, and ecology. The second part of the book, which covers four chapters, speaks both to geoscientists and to microbiologists. It offers a hydrologic perspective on how microbial processes affect groundwater geochemistry in pristine systems—an important topic for geochemists since most ground-water reservoirs have not been chemically affected by human activities, and naturally occurring microbial processes have major impacts on water quality. At the same time, Part Two introduces microbiologists to the different classes of ground-water systems, and gives an overview of techniques for sampling subsurface environments. In addition, microbiologists gain an understanding of biogeochemical cycling in ground-water systems—in coverage that’s unique to this book—and of the classic geochemical modeling techniques that are used to study microbial processes. The final three chapters of Ground-Water Microbiology and Geochemistry focus in on microbial processes in contaminated ground-water systems—a topic of central concern to environmental scientists. In this concluding section, microbiologists see how degradation processes depend upon the hydrologic and geochemical environments within which they operate. Having achieved a basic knowledge of microbiological and biochemical concepts from the earlier chapters, geoscientists are fully prepared for this treatment of microbial acclimation and the biodegradation of petroleum hydrocarbons and halogenated compounds. Ground-Water Microbiology and Geochemistry is as graphically impressive as it is far reaching. High-quality, computer-generated illustrations, of particular appeal to visually oriented geoscientists, can be found throughout the book. Equally important is the book’s unusually comprehensive bibliography, which, like the text itself, spans the relevant science and engineering disciplines. The importance of Ground-Water Microbiology and Geochemistry to geoscientists, hydrologists, and environmental scientists has been amply documented. The book should also be required reading for water planners and lawyers involved in environmental issues. It will also serve as a compelling text in upper undergraduate and graduate courses in ground-water chemistry.
Microbial Styrene Degradation
Author: Dirk Tischler
Publisher: Springer
ISBN: 3319248626
Category : Science
Languages : en
Pages : 120
Book Description
This book describes the complex processes involved in styrene degradation by microbes, including highly adaptive microorganisms, the various enzymes involved in styrene biodegradation, new styrene-catabolic routes, novel regulatory mechanisms, and the genes coding for styrene metabolizing enzymes. Numerous biotechnological applications are discussed, such as the development of sustainable eco-friendly technologies as well as the use of styrene degrading microorganisms and their enzymes as a rich resource for biotechnology.
Publisher: Springer
ISBN: 3319248626
Category : Science
Languages : en
Pages : 120
Book Description
This book describes the complex processes involved in styrene degradation by microbes, including highly adaptive microorganisms, the various enzymes involved in styrene biodegradation, new styrene-catabolic routes, novel regulatory mechanisms, and the genes coding for styrene metabolizing enzymes. Numerous biotechnological applications are discussed, such as the development of sustainable eco-friendly technologies as well as the use of styrene degrading microorganisms and their enzymes as a rich resource for biotechnology.