Author: Salvatore Esposito
Publisher: World Scientific
ISBN: 9814291234
Category : Science
Languages : en
Pages : 702
Book Description
This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on the functioning, construction and operation of several different kinds of nuclear reactors are reported. Here, the main engineering problems are encountered and solved by employing simple and practical methods, which are described in detail. This seminal work mainly caters to students, teachers and researchers working in nuclear physics and engineering, but it is of invaluable interest to historians of physics too, since the material presented here is entirely novel.
Neutron Physics for Nuclear Reactors
Author: Salvatore Esposito
Publisher: World Scientific
ISBN: 9814291234
Category : Science
Languages : en
Pages : 702
Book Description
This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on the functioning, construction and operation of several different kinds of nuclear reactors are reported. Here, the main engineering problems are encountered and solved by employing simple and practical methods, which are described in detail. This seminal work mainly caters to students, teachers and researchers working in nuclear physics and engineering, but it is of invaluable interest to historians of physics too, since the material presented here is entirely novel.
Publisher: World Scientific
ISBN: 9814291234
Category : Science
Languages : en
Pages : 702
Book Description
This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on the functioning, construction and operation of several different kinds of nuclear reactors are reported. Here, the main engineering problems are encountered and solved by employing simple and practical methods, which are described in detail. This seminal work mainly caters to students, teachers and researchers working in nuclear physics and engineering, but it is of invaluable interest to historians of physics too, since the material presented here is entirely novel.
Computational Methods in Reactor Shielding
Author: James Wood
Publisher: Elsevier
ISBN: 1483148130
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Computational Methods in Reactor Shielding deals with the mathematical processes involved in how to effectively control the dangerous effect of nuclear radiation. Reactor shielding is considered an important aspect in the operation of reactor systems to ensure the safety of personnel and others that can be directly or indirectly affected. Composed of seven chapters, the book discusses ionizing radiation and how it aids in the control and containment of radioactive substances that are considered harmful to all living things. The text also outlines the necessary radiation quantities and units that are needed for a systemic control of shielding and presents an examination of the main sources of nuclear radiation. A discussion of the gamma photon cross sections and an introduction to BMIX, a computer program used in illustrating a technique in identifying the gamma ray build-up factor for a reactor shield, are added. The selection also discusses various mathematical representations and areas of shielding theory that are being used in radiation shielding. The book is of great value to those involved in the development and implementation of systems to minimize and control the dangerous and lethal effect of radiation.
Publisher: Elsevier
ISBN: 1483148130
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Computational Methods in Reactor Shielding deals with the mathematical processes involved in how to effectively control the dangerous effect of nuclear radiation. Reactor shielding is considered an important aspect in the operation of reactor systems to ensure the safety of personnel and others that can be directly or indirectly affected. Composed of seven chapters, the book discusses ionizing radiation and how it aids in the control and containment of radioactive substances that are considered harmful to all living things. The text also outlines the necessary radiation quantities and units that are needed for a systemic control of shielding and presents an examination of the main sources of nuclear radiation. A discussion of the gamma photon cross sections and an introduction to BMIX, a computer program used in illustrating a technique in identifying the gamma ray build-up factor for a reactor shield, are added. The selection also discusses various mathematical representations and areas of shielding theory that are being used in radiation shielding. The book is of great value to those involved in the development and implementation of systems to minimize and control the dangerous and lethal effect of radiation.
Reactor Shielding Design Manual
Author: Theodore Rockwell
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
Physics of Nuclear Reactors
Author: P. Mohanakrishnan
Publisher: Elsevier
ISBN: 012822441X
Category : Science
Languages : en
Pages : 786
Book Description
Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 - 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection
Publisher: Elsevier
ISBN: 012822441X
Category : Science
Languages : en
Pages : 786
Book Description
Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 - 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection
The Physics of Nuclear Reactors
Author: Serge Marguet
Publisher: Springer
ISBN: 3319595601
Category : Science
Languages : en
Pages : 1462
Book Description
This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.
Publisher: Springer
ISBN: 3319595601
Category : Science
Languages : en
Pages : 1462
Book Description
This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.
Fundamentals of Nuclear Reactor Physics
Author: Elmer E. Lewis
Publisher: Elsevier
ISBN: 0080560431
Category : Technology & Engineering
Languages : en
Pages : 311
Book Description
Fundamentals of Nuclear Reactor Physics offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation . It provides a clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release. It provides in-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution. It includes ample worked-out examples and over 100 end-of-chapter problems. Engineering students will find this applications-oriented approach, with many worked-out examples, more accessible and more meaningful as they aspire to become future nuclear engineers. - A clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release - In-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution - Ample worked-out examples and over 100 end-of-chapter problems - Full Solutions Manual
Publisher: Elsevier
ISBN: 0080560431
Category : Technology & Engineering
Languages : en
Pages : 311
Book Description
Fundamentals of Nuclear Reactor Physics offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation . It provides a clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release. It provides in-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution. It includes ample worked-out examples and over 100 end-of-chapter problems. Engineering students will find this applications-oriented approach, with many worked-out examples, more accessible and more meaningful as they aspire to become future nuclear engineers. - A clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release - In-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution - Ample worked-out examples and over 100 end-of-chapter problems - Full Solutions Manual
Radiation Shielding
Author: J. Kenneth Shultis
Publisher: Amer Nuclear Society
ISBN: 9780894484568
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
This newly published book is intended for dual use as a textbook for students in radiation shielding courses and a reference work for shielding practitioners. It emphasizes the principles behind techniques used in various aspects of shield analysis and presents these principles in many different contexts. This approach is intended to provide a strong base of understanding in order to facilitate use of the large shielding codes that have come to dominate shielding design and analysis. An assumption is made that the reader has an understanding of mathematics through basic calculus and vector analysis as well as a knowledge of the nuclear physics of radioactive decay. For most chapters, problem sets are provided.
Publisher: Amer Nuclear Society
ISBN: 9780894484568
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
This newly published book is intended for dual use as a textbook for students in radiation shielding courses and a reference work for shielding practitioners. It emphasizes the principles behind techniques used in various aspects of shield analysis and presents these principles in many different contexts. This approach is intended to provide a strong base of understanding in order to facilitate use of the large shielding codes that have come to dominate shielding design and analysis. An assumption is made that the reader has an understanding of mathematics through basic calculus and vector analysis as well as a knowledge of the nuclear physics of radioactive decay. For most chapters, problem sets are provided.
Physics of High-Temperature Reactors
Author: Luigi Massimo
Publisher: Elsevier
ISBN: 1483280284
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
Physics of High-Temperature Reactors focuses on the physics of high-temperature reactors (HTRs) and covers topics ranging from fuel cycles and refueling strategies to neutron cross-sections, transport and diffusion theory, and resonance absorption. Spectrum calculations and cross-section averaging are also discussed, along with the temperature coefficient and reactor control. Comprised of 16 chapters, this book begins with a general description of the HTR core as well as its performance limitations. The next chapter deals with general considerations about HTR physics, including quantities to be determined and optimized in the design of nuclear reactors. Potential scattering and resonance reactions between neutrons and atomic nuclei are then considered, together with basic aspects of transport and diffusion theory. Subsequent chapters explore methods for solving the diffusion equation; slowing-down and neutron thermalization in graphite; HTR core design, fuel management, and cost calculations; and core dynamics and accident analysis. The final chapter describes the sequence of reactor design calculations. This monograph is written primarily for students of HTR physics who are preparing to enter the field as well as technologists of other disciplines who are working on the system.
Publisher: Elsevier
ISBN: 1483280284
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
Physics of High-Temperature Reactors focuses on the physics of high-temperature reactors (HTRs) and covers topics ranging from fuel cycles and refueling strategies to neutron cross-sections, transport and diffusion theory, and resonance absorption. Spectrum calculations and cross-section averaging are also discussed, along with the temperature coefficient and reactor control. Comprised of 16 chapters, this book begins with a general description of the HTR core as well as its performance limitations. The next chapter deals with general considerations about HTR physics, including quantities to be determined and optimized in the design of nuclear reactors. Potential scattering and resonance reactions between neutrons and atomic nuclei are then considered, together with basic aspects of transport and diffusion theory. Subsequent chapters explore methods for solving the diffusion equation; slowing-down and neutron thermalization in graphite; HTR core design, fuel management, and cost calculations; and core dynamics and accident analysis. The final chapter describes the sequence of reactor design calculations. This monograph is written primarily for students of HTR physics who are preparing to enter the field as well as technologists of other disciplines who are working on the system.
Concrete Radiation Shielding
Author: M. F. Kaplan
Publisher: Longman Publishing Group
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
A discussion of concrete radiation shielding dealing with relevant atomic and nuclear physics, properties of radiation, materials for and properties of concrete and the design and cost of shielding together with other important aspects.
Publisher: Longman Publishing Group
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
A discussion of concrete radiation shielding dealing with relevant atomic and nuclear physics, properties of radiation, materials for and properties of concrete and the design and cost of shielding together with other important aspects.
Computational Methods in Nuclear Radiation Shielding and Dosimetry
Author: Kulwinder Singh Mann
Publisher: Nova Science Publishers
ISBN: 9781536185270
Category :
Languages : en
Pages : 355
Book Description
This book is a compilation of the most widely used computational methods and techniques for calculating shielding parameters that are required for radiation-shielding investigations of dosimetric materials. The theoretical, experimental, and simulation methods and their applications are described. The book is divided into thirteen chapters that are arranged in a systematic order and written by experienced scientists and academicians worldwide. The gamma-ray shielding parameter calculations with the Monte Carlo simulation techniques viz. MCNP, GEANT4, FLUKA, and EGS5 codes are illustrated. Descriptions of various software such as XCOM, WinXCom, FLUKA, Phy-X, BMIX, ASFIT, and ANSI are provided. A review of fundamental quantities for calculation of ambient dose, i.e., photon and neutron buildup factors, is presented. A phantom-based computation model has been included to indicate the applications of radiation dosimetry in medical diagnostics. The chapters on computed-tomography (CT) have been included to provide insight into the radiations' diagnostic capabilities and applications. The shielding effectiveness of some materials such as ignimbrite rocks, amorphous metals, marbles, dosimetric materials, and novel shielding materials have been investigated. The most recent concept of multi-layered shielding and related buildup factors' influence on the shielding effectiveness is described with a computer program, the RIMP-TOOLKIT. This book is the result of the authors' hard-work and determination during the worldwide lockdown period caused by the spread of COVID-19. The conclusions presented in this book will be useful in nuclear radiation shielding and for dosimetric purposes. Additionally, this book will be helpful for postgraduate students of physics and chemistry.
Publisher: Nova Science Publishers
ISBN: 9781536185270
Category :
Languages : en
Pages : 355
Book Description
This book is a compilation of the most widely used computational methods and techniques for calculating shielding parameters that are required for radiation-shielding investigations of dosimetric materials. The theoretical, experimental, and simulation methods and their applications are described. The book is divided into thirteen chapters that are arranged in a systematic order and written by experienced scientists and academicians worldwide. The gamma-ray shielding parameter calculations with the Monte Carlo simulation techniques viz. MCNP, GEANT4, FLUKA, and EGS5 codes are illustrated. Descriptions of various software such as XCOM, WinXCom, FLUKA, Phy-X, BMIX, ASFIT, and ANSI are provided. A review of fundamental quantities for calculation of ambient dose, i.e., photon and neutron buildup factors, is presented. A phantom-based computation model has been included to indicate the applications of radiation dosimetry in medical diagnostics. The chapters on computed-tomography (CT) have been included to provide insight into the radiations' diagnostic capabilities and applications. The shielding effectiveness of some materials such as ignimbrite rocks, amorphous metals, marbles, dosimetric materials, and novel shielding materials have been investigated. The most recent concept of multi-layered shielding and related buildup factors' influence on the shielding effectiveness is described with a computer program, the RIMP-TOOLKIT. This book is the result of the authors' hard-work and determination during the worldwide lockdown period caused by the spread of COVID-19. The conclusions presented in this book will be useful in nuclear radiation shielding and for dosimetric purposes. Additionally, this book will be helpful for postgraduate students of physics and chemistry.