Author: Roland Coelho
Publisher: Elsevier
ISBN: 0444601805
Category : Science
Languages : en
Pages : 188
Book Description
Physics of Dielectrics for the Engineer is a systematic attempt to clarify and correlate advanced concepts underlying the physics of dielectrics. It reviews the basics of electrostatics, the different models for the polarizability of atoms and molecules, and the macroscopic permittivity. It also discusses the behavior of matter in an alternating field in relation to complex permittivity, the interactions between field and matter, dissipative effects under high electric fields, the wide-gap semiconductor model, the types of charge carriers, and the main disruptive processes. Organized into three parts encompassing 12 chapters, this volume begins with an overview of the physical concepts involved in the behavior of insulating materials subjected to high electric fields. It then explores the potential of a group of charges, and dipoles induced in an applied field. The book explains statistical theories of dipole orientation in an applied field and theories relating molecular and macroscopic quantities. The propagation of an electromagnetic wave, dipole relaxation of defects in crystal lattices, and space-charge polarization and relaxation are also discussed. The book explains the uni-dimensional polar lattice, intrinsic and impurity conduction in wide-gap semiconductors, thermal runaway, and collision breakdown. Many problems with corresponding solutions are included to assist the reader. This book will benefit electrical engineers, as well as electrical engineering students, scientists, and technicians.
Physics of Dielectrics for the Engineer
Author: Roland Coelho
Publisher: Elsevier
ISBN: 0444601805
Category : Science
Languages : en
Pages : 188
Book Description
Physics of Dielectrics for the Engineer is a systematic attempt to clarify and correlate advanced concepts underlying the physics of dielectrics. It reviews the basics of electrostatics, the different models for the polarizability of atoms and molecules, and the macroscopic permittivity. It also discusses the behavior of matter in an alternating field in relation to complex permittivity, the interactions between field and matter, dissipative effects under high electric fields, the wide-gap semiconductor model, the types of charge carriers, and the main disruptive processes. Organized into three parts encompassing 12 chapters, this volume begins with an overview of the physical concepts involved in the behavior of insulating materials subjected to high electric fields. It then explores the potential of a group of charges, and dipoles induced in an applied field. The book explains statistical theories of dipole orientation in an applied field and theories relating molecular and macroscopic quantities. The propagation of an electromagnetic wave, dipole relaxation of defects in crystal lattices, and space-charge polarization and relaxation are also discussed. The book explains the uni-dimensional polar lattice, intrinsic and impurity conduction in wide-gap semiconductors, thermal runaway, and collision breakdown. Many problems with corresponding solutions are included to assist the reader. This book will benefit electrical engineers, as well as electrical engineering students, scientists, and technicians.
Publisher: Elsevier
ISBN: 0444601805
Category : Science
Languages : en
Pages : 188
Book Description
Physics of Dielectrics for the Engineer is a systematic attempt to clarify and correlate advanced concepts underlying the physics of dielectrics. It reviews the basics of electrostatics, the different models for the polarizability of atoms and molecules, and the macroscopic permittivity. It also discusses the behavior of matter in an alternating field in relation to complex permittivity, the interactions between field and matter, dissipative effects under high electric fields, the wide-gap semiconductor model, the types of charge carriers, and the main disruptive processes. Organized into three parts encompassing 12 chapters, this volume begins with an overview of the physical concepts involved in the behavior of insulating materials subjected to high electric fields. It then explores the potential of a group of charges, and dipoles induced in an applied field. The book explains statistical theories of dipole orientation in an applied field and theories relating molecular and macroscopic quantities. The propagation of an electromagnetic wave, dipole relaxation of defects in crystal lattices, and space-charge polarization and relaxation are also discussed. The book explains the uni-dimensional polar lattice, intrinsic and impurity conduction in wide-gap semiconductors, thermal runaway, and collision breakdown. Many problems with corresponding solutions are included to assist the reader. This book will benefit electrical engineers, as well as electrical engineering students, scientists, and technicians.
Physics of Dielectrics for the Engineer
Author: Roland Coelho
Publisher:
ISBN: 9780444417558
Category : Dielectrics
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780444417558
Category : Dielectrics
Languages : en
Pages : 0
Book Description
Engineering Physics
Author: Purnima Khare
Publisher: Jones & Bartlett Learning
ISBN: 9780763773748
Category : Education
Languages : en
Pages : 586
Book Description
This text/reference provides students, practicing engineers, and scientists with the fundamental physical laws and modern applications used in industry. Unlike many of its competitors, modern physics theory (e.g., quantum physics) and its applications are discussed in detail, including laser techniques and fiber optics, nuclear fusion, digital electronics, wave optics, and more. An extensive review of Boolean algebra and logic gates is also included. Because of its in-text examples with solutions and self-study exercise sets, the book can be used as a refresher for engineering licensing exams or as a full year course. It emphasizes only the level of mathematics needed to master concepts used in industry.
Publisher: Jones & Bartlett Learning
ISBN: 9780763773748
Category : Education
Languages : en
Pages : 586
Book Description
This text/reference provides students, practicing engineers, and scientists with the fundamental physical laws and modern applications used in industry. Unlike many of its competitors, modern physics theory (e.g., quantum physics) and its applications are discussed in detail, including laser techniques and fiber optics, nuclear fusion, digital electronics, wave optics, and more. An extensive review of Boolean algebra and logic gates is also included. Because of its in-text examples with solutions and self-study exercise sets, the book can be used as a refresher for engineering licensing exams or as a full year course. It emphasizes only the level of mathematics needed to master concepts used in industry.
Engineering Dielectrics, Volume IIA, Electrical Properties of Solid Insulating Materials
Author: R. Bartnikas
Publisher: ASTM International
ISBN:
Category :
Languages : en
Pages : 727
Book Description
Publisher: ASTM International
ISBN:
Category :
Languages : en
Pages : 727
Book Description
Dielectrics in Electric Fields
Author: Gorur G. Raju
Publisher: CRC Press
ISBN: 0824747372
Category : Technology & Engineering
Languages : en
Pages : 597
Book Description
Examines the influences of electric fields on dielectric materials and explores their distinctive behavior through well established principles of physics and engineering and recent literature on dielectrics. Facilitates understanding of the space charge phenomena in the nonuniform fields. Contains more than 800 display equations.
Publisher: CRC Press
ISBN: 0824747372
Category : Technology & Engineering
Languages : en
Pages : 597
Book Description
Examines the influences of electric fields on dielectric materials and explores their distinctive behavior through well established principles of physics and engineering and recent literature on dielectrics. Facilitates understanding of the space charge phenomena in the nonuniform fields. Contains more than 800 display equations.
Dielectric Metamaterials
Author: Igal Brener
Publisher: Woodhead Publishing
ISBN: 0081024037
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
Dielectric Metamaterials: Fundamentals, Designs, and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths. In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials.
Publisher: Woodhead Publishing
ISBN: 0081024037
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
Dielectric Metamaterials: Fundamentals, Designs, and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths. In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials.
Introduction to Solid State Physics for Materials Engineers
Author: Emil Zolotoyabko
Publisher: John Wiley & Sons
ISBN: 3527348840
Category : Science
Languages : en
Pages : 306
Book Description
A concise, accessible, and up-to-date introduction to solid state physics Solid state physics is the foundation of many of today's technologies including LEDs, MOSFET transistors, solar cells, lasers, digital cameras, data storage and processing. Introduction to Solid State Physics for Materials Engineers offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials engineers. The text links the fundamentals of solid state physics to modern materials, such as graphene, photonic and metamaterials, superconducting magnets, high-temperature superconductors and topological insulators. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. The text covers a wide range of relevant topics, including propagation of electron and acoustic waves in crystals, electrical conductivity in metals and semiconductors, light interaction with metals, semiconductors and dielectrics, thermoelectricity, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, chemistry and physics, Introduction to Solid State Physics for Materials Engineers is an important guide to help foster an understanding of solid state physics.
Publisher: John Wiley & Sons
ISBN: 3527348840
Category : Science
Languages : en
Pages : 306
Book Description
A concise, accessible, and up-to-date introduction to solid state physics Solid state physics is the foundation of many of today's technologies including LEDs, MOSFET transistors, solar cells, lasers, digital cameras, data storage and processing. Introduction to Solid State Physics for Materials Engineers offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials engineers. The text links the fundamentals of solid state physics to modern materials, such as graphene, photonic and metamaterials, superconducting magnets, high-temperature superconductors and topological insulators. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. The text covers a wide range of relevant topics, including propagation of electron and acoustic waves in crystals, electrical conductivity in metals and semiconductors, light interaction with metals, semiconductors and dielectrics, thermoelectricity, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, chemistry and physics, Introduction to Solid State Physics for Materials Engineers is an important guide to help foster an understanding of solid state physics.
Metamaterials
Author: Nader Engheta
Publisher: John Wiley & Sons
ISBN: 0471784184
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.
Publisher: John Wiley & Sons
ISBN: 0471784184
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.
Engineering Dielectrics
Author: R. Bartnikas
Publisher: ASTM International
ISBN: 9780803103320
Category : Technology & Engineering
Languages : en
Pages : 538
Book Description
Publisher: ASTM International
ISBN: 9780803103320
Category : Technology & Engineering
Languages : en
Pages : 538
Book Description
High Permittivity Gate Dielectric Materials
Author: Samares Kar
Publisher: Springer Science & Business Media
ISBN: 3642365353
Category : Technology & Engineering
Languages : en
Pages : 515
Book Description
"The book comprehensively covers all the current and the emerging areas of the physics and the technology of high permittivity gate dielectric materials, including, topics such as MOSFET basics and characteristics, hafnium-based gate dielectric materials, Hf-based gate dielectric processing, metal gate electrodes, flat-band and threshold voltage tuning, channel mobility, high-k gate stack degradation and reliability, lanthanide-based high-k gate stack materials, ternary hafnia and lanthania based high-k gate stack films, crystalline high-k oxides, high mobility substrates, and parameter extraction. Each chapter begins with the basics necessary for understanding the topic, followed by a comprehensive review of the literature, and ultimately graduating to the current status of the technology and our scientific understanding and the future prospects." .
Publisher: Springer Science & Business Media
ISBN: 3642365353
Category : Technology & Engineering
Languages : en
Pages : 515
Book Description
"The book comprehensively covers all the current and the emerging areas of the physics and the technology of high permittivity gate dielectric materials, including, topics such as MOSFET basics and characteristics, hafnium-based gate dielectric materials, Hf-based gate dielectric processing, metal gate electrodes, flat-band and threshold voltage tuning, channel mobility, high-k gate stack degradation and reliability, lanthanide-based high-k gate stack materials, ternary hafnia and lanthania based high-k gate stack films, crystalline high-k oxides, high mobility substrates, and parameter extraction. Each chapter begins with the basics necessary for understanding the topic, followed by a comprehensive review of the literature, and ultimately graduating to the current status of the technology and our scientific understanding and the future prospects." .