Author: F R N Nabarro
Publisher: CRC Press
ISBN: 1135477639
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
Unique in its approach, this introduction to the physics of creep concentrates on the physical principles underlying observed phenomena. As such it provides a resource for graduate students in materials science, metallurgy, mechanical engineering, physics and chemistry as well as researchers in other fields. Following a brief mathematical treatment, the authors introduce creep phenomena together with some empirical laws and observations. The mechanisms of creep and diffusion under varying experimental conditions are subsequently analysed and developed. The second half of the text considers alloying in greater detail as well as exploring the structure and properties of superalloys and stress effects in these materials.
Physics Of Creep And Creep-Resistant Alloys
Author: F R N Nabarro
Publisher: CRC Press
ISBN: 1135477639
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
Unique in its approach, this introduction to the physics of creep concentrates on the physical principles underlying observed phenomena. As such it provides a resource for graduate students in materials science, metallurgy, mechanical engineering, physics and chemistry as well as researchers in other fields. Following a brief mathematical treatment, the authors introduce creep phenomena together with some empirical laws and observations. The mechanisms of creep and diffusion under varying experimental conditions are subsequently analysed and developed. The second half of the text considers alloying in greater detail as well as exploring the structure and properties of superalloys and stress effects in these materials.
Publisher: CRC Press
ISBN: 1135477639
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
Unique in its approach, this introduction to the physics of creep concentrates on the physical principles underlying observed phenomena. As such it provides a resource for graduate students in materials science, metallurgy, mechanical engineering, physics and chemistry as well as researchers in other fields. Following a brief mathematical treatment, the authors introduce creep phenomena together with some empirical laws and observations. The mechanisms of creep and diffusion under varying experimental conditions are subsequently analysed and developed. The second half of the text considers alloying in greater detail as well as exploring the structure and properties of superalloys and stress effects in these materials.
Creep and High Temperature Deformation of Metals and Alloys
Author: Stefano Spigarelli
Publisher: MDPI
ISBN: 3039218786
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated. This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.
Publisher: MDPI
ISBN: 3039218786
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated. This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.
Fundamentals of Creep in Metals and Alloys
Author: Michael E. Kassner
Publisher: Elsevier
ISBN: 0080532144
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion
Publisher: Elsevier
ISBN: 0080532144
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion
Aerospace Alloys
Author: Stefano Gialanella
Publisher: Springer Nature
ISBN: 3030244407
Category : Technology & Engineering
Languages : en
Pages : 583
Book Description
This book presents an up-to-date overview on the main classes of metallic materials currently used in aeronautical structures and propulsion engines and discusses other materials of potential interest for structural aerospace applications. The coverage encompasses light alloys such as aluminum-, magnesium-, and titanium-based alloys, including titanium aluminides; steels; superalloys; oxide dispersion strengthened alloys; refractory alloys; and related systems such as laminate composites. In each chapter, materials properties and relevant technological aspects, including processing, are presented. Individual chapters focus on coatings for gas turbine engines and hot corrosion of alloys and coatings. Readers will also find consideration of applications in aerospace-related fields. The book takes full account of the impact of energy saving and environmental issues on materials development, reflecting the major shifts that have occurred in the motivations guiding research efforts into the development of new materials systems. Aerospace Alloys will be a valuable reference for graduate students on materials science and engineering courses and will also provide useful information for engineers working in the aerospace, metallurgical, and energy production industries.
Publisher: Springer Nature
ISBN: 3030244407
Category : Technology & Engineering
Languages : en
Pages : 583
Book Description
This book presents an up-to-date overview on the main classes of metallic materials currently used in aeronautical structures and propulsion engines and discusses other materials of potential interest for structural aerospace applications. The coverage encompasses light alloys such as aluminum-, magnesium-, and titanium-based alloys, including titanium aluminides; steels; superalloys; oxide dispersion strengthened alloys; refractory alloys; and related systems such as laminate composites. In each chapter, materials properties and relevant technological aspects, including processing, are presented. Individual chapters focus on coatings for gas turbine engines and hot corrosion of alloys and coatings. Readers will also find consideration of applications in aerospace-related fields. The book takes full account of the impact of energy saving and environmental issues on materials development, reflecting the major shifts that have occurred in the motivations guiding research efforts into the development of new materials systems. Aerospace Alloys will be a valuable reference for graduate students on materials science and engineering courses and will also provide useful information for engineers working in the aerospace, metallurgical, and energy production industries.
Molecular Dynamics Simulation of Nanostructured Materials
Author: Snehanshu Pal
Publisher: CRC Press
ISBN: 0429670966
Category : Mathematics
Languages : en
Pages : 314
Book Description
Molecular dynamics simulation is a significant technique to gain insight into the mechanical behavior of nanostructured (NS) materials and associated underlying deformation mechanisms at the atomic scale. The purpose of this book is to detect and correlate critically current achievements and properly assess the state of the art in the mechanical behavior study of NS material in the perspective of the atomic scale simulation of the deformation process. More precisely, the book aims to provide representative examples of mechanical behavior studies carried out using molecular dynamics simulations, which provide contributory research findings toward progress in the field of NS material technology.
Publisher: CRC Press
ISBN: 0429670966
Category : Mathematics
Languages : en
Pages : 314
Book Description
Molecular dynamics simulation is a significant technique to gain insight into the mechanical behavior of nanostructured (NS) materials and associated underlying deformation mechanisms at the atomic scale. The purpose of this book is to detect and correlate critically current achievements and properly assess the state of the art in the mechanical behavior study of NS material in the perspective of the atomic scale simulation of the deformation process. More precisely, the book aims to provide representative examples of mechanical behavior studies carried out using molecular dynamics simulations, which provide contributory research findings toward progress in the field of NS material technology.
Structural Alloys for Power Plants
Author: A. Shirzadi
Publisher: Elsevier
ISBN: 0857097555
Category : Technology & Engineering
Languages : en
Pages : 519
Book Description
Current fleets of conventional and nuclear power plants face increasing hostile environmental conditions due to increasingly high temperature operation for improved capacity and efficiency, and the need for long term service. Additional challenges are presented by the requirement to cycle plants to meet peak-load operation. This book presents a comprehensive review of structural materials in conventional and nuclear energy applications. Opening chapters address operational challenges and structural alloy requirements in different types of power plants. The following sections review power plant structural alloys and methods to mitigate critical materials degradation in power plants.
Publisher: Elsevier
ISBN: 0857097555
Category : Technology & Engineering
Languages : en
Pages : 519
Book Description
Current fleets of conventional and nuclear power plants face increasing hostile environmental conditions due to increasingly high temperature operation for improved capacity and efficiency, and the need for long term service. Additional challenges are presented by the requirement to cycle plants to meet peak-load operation. This book presents a comprehensive review of structural materials in conventional and nuclear energy applications. Opening chapters address operational challenges and structural alloy requirements in different types of power plants. The following sections review power plant structural alloys and methods to mitigate critical materials degradation in power plants.
Modeling High Temperature Materials Behavior for Structural Analysis
Author: Konstantin Naumenko
Publisher: Springer
ISBN: 331931629X
Category : Science
Languages : en
Pages : 381
Book Description
This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.
Publisher: Springer
ISBN: 331931629X
Category : Science
Languages : en
Pages : 381
Book Description
This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.
Superalloy
Author: Fouad Sabry
Publisher: One Billion Knowledgeable
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
What Is Superalloy A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Several key characteristics of a superalloy are excellent mechanical strength, resistance to thermal creep deformation, good surface stability, and resistance to corrosion or oxidation. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Superalloy Chapter 2: Oxide dispersion-strengthened alloy Chapter 3: Titanium aluminide Chapter 4: Alloy Chapter 5: Strength of materials Chapter 6: Creep (deformation) Chapter 7: Corrosion Chapter 8: Redox (II) Answering the public top questions about superalloy. (III) Real world examples for the usage of superalloy in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of superalloy' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of superalloy.
Publisher: One Billion Knowledgeable
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
What Is Superalloy A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Several key characteristics of a superalloy are excellent mechanical strength, resistance to thermal creep deformation, good surface stability, and resistance to corrosion or oxidation. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Superalloy Chapter 2: Oxide dispersion-strengthened alloy Chapter 3: Titanium aluminide Chapter 4: Alloy Chapter 5: Strength of materials Chapter 6: Creep (deformation) Chapter 7: Corrosion Chapter 8: Redox (II) Answering the public top questions about superalloy. (III) Real world examples for the usage of superalloy in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of superalloy' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of superalloy.
Materials Science in Microelectronics II
Author: Eugene Machlin
Publisher: Elsevier
ISBN: 0080460402
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
The subject matter of thin-films – which play a key role in microelectronics – divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: •Electrical properties•Magnetic properties•Optical properties•Mechanical properties•Mass transport properties•Interface and junction properties•Defects and properties - Captures the importance of thin films to microelectronic development - Examines the cause / effect relationship of structure on thin film properties
Publisher: Elsevier
ISBN: 0080460402
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
The subject matter of thin-films – which play a key role in microelectronics – divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: •Electrical properties•Magnetic properties•Optical properties•Mechanical properties•Mass transport properties•Interface and junction properties•Defects and properties - Captures the importance of thin films to microelectronic development - Examines the cause / effect relationship of structure on thin film properties
Unified Plasticity for Engineering Applications
Author: Sol R. Bodner
Publisher: Springer Science & Business Media
ISBN: 1461505518
Category : Science
Languages : en
Pages : 126
Book Description
Considerably simplified models of macroscopic material behavior, such as the idealization for metals of elastic-time independent plastic response with a yield (onset) criterion, have served the engineering profession well for many years. They are still basic to the design and analysis of most structural applications. In the need to use materials more effectively, there are circumstances where those traditional models are not adequate, and constitutive laws that are more physically realistic have to be employed. This is especially relevant to conditions where the inherent time dependence of inelastic deformations, referred to as "viscoplasticity", is pronounced such as at elevated temperatures and for high strain rates. Unified theories of elastic-viscoplastic material behavior, which are primarily applicable for metals and metallic alloys, combine all aspects of inelastic response into a set of time dependent equations with a single inelastic strain rate variable. For such theories, creep under constant stress, stress relaxation under constant strain, and stress-strain relations at constant rates are each special cases of a general formulation. Those equations mayor may not include a yield criterion, but models which do not separate a fully elastic region from the overall response could be considered "unified" in a more general sense. The theories have reached a level of development and maturity where they are being used in a number of sophisticated engineering applications. However, they have not yet become a standard method of material representation for general engineering practice.
Publisher: Springer Science & Business Media
ISBN: 1461505518
Category : Science
Languages : en
Pages : 126
Book Description
Considerably simplified models of macroscopic material behavior, such as the idealization for metals of elastic-time independent plastic response with a yield (onset) criterion, have served the engineering profession well for many years. They are still basic to the design and analysis of most structural applications. In the need to use materials more effectively, there are circumstances where those traditional models are not adequate, and constitutive laws that are more physically realistic have to be employed. This is especially relevant to conditions where the inherent time dependence of inelastic deformations, referred to as "viscoplasticity", is pronounced such as at elevated temperatures and for high strain rates. Unified theories of elastic-viscoplastic material behavior, which are primarily applicable for metals and metallic alloys, combine all aspects of inelastic response into a set of time dependent equations with a single inelastic strain rate variable. For such theories, creep under constant stress, stress relaxation under constant strain, and stress-strain relations at constant rates are each special cases of a general formulation. Those equations mayor may not include a yield criterion, but models which do not separate a fully elastic region from the overall response could be considered "unified" in a more general sense. The theories have reached a level of development and maturity where they are being used in a number of sophisticated engineering applications. However, they have not yet become a standard method of material representation for general engineering practice.