Physics of Buoyant Flows

Physics of Buoyant Flows PDF Author: Mahendra Kurma Verma
Publisher:
ISBN: 9789813237803
Category : TECHNOLOGY & ENGINEERING
Languages : en
Pages : 327

Get Book Here

Book Description

Physics of Buoyant Flows

Physics of Buoyant Flows PDF Author: Mahendra Kurma Verma
Publisher:
ISBN: 9789813237803
Category : TECHNOLOGY & ENGINEERING
Languages : en
Pages : 327

Get Book Here

Book Description


Physics Of Buoyant Flows: From Instabilities To Turbulence

Physics Of Buoyant Flows: From Instabilities To Turbulence PDF Author: Mahendra Kumar Verma
Publisher: World Scientific
ISBN: 9813237813
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
Gravity pervades the whole universe; hence buoyancy drives fluids everywhere including those in the atmospheres and interiors of planets and stars. Prime examples of such flows are mantle convection, atmospheric flows, solar convection, dynamo process, heat exchangers, airships and hot air balloons. In this book we present fundamentals and applications of thermal convection and stratified flows.Buoyancy brings in extremely rich phenomena including waves and instabilities, patterns, chaos, and turbulence. In this book we present these topics in a systematic manner. First we present a unified treatment of linear theory that yields waves and thermal instability for stably and unstably-stratified flows respectively. We extend this analysis to include rotation and magnetic field. We also describe nonlinear saturation and pattern formation in Rayleigh-BĂ©nard convection.The second half of the book is dedicated to buoyancy-driven turbulence, both in stably-stratified flow and in thermal convection. We describe the spectral theory including energy flux and show that the thermally-driven turbulence is similar to hydrodynamic turbulence. We also describe large-scale quantities like Reynolds and Nusselt numbers, flow anisotropy, and the dynamics of flow structures, namely flow reversals. Thus, this book presents all the major aspects of the buoyancy-driven flows in a coherent manner that would appeal to advanced graduate students and researchers.

Energy Transfers in Fluid Flows

Energy Transfers in Fluid Flows PDF Author: Mahendra K. Verma
Publisher: Cambridge University Press
ISBN: 1108226108
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
An up-to-date comprehensive text useful for graduate students and academic researchers in the field of energy transfers in fluid flows. The initial part of the text covers discussion on energy transfer formalism in hydrodynamics and the latter part covers applications including passive scalar, buoyancy driven flows, magnetohydrodynamic (MHD), dynamo, rotating flows and compressible flows. Energy transfers among large-scale modes play a critical role in nonlinear instabilities and pattern formation and is discussed comprehensively in the chapter on buoyancy-driven flows. It derives formulae to compute Kolmogorov's energy flux, shell-to-shell energy transfers and locality. The book discusses the concept of energy transfer formalism which helps in calculating anisotropic turbulence.

Dynamics and Control of Energy Systems

Dynamics and Control of Energy Systems PDF Author: Achintya Mukhopadhyay
Publisher: Springer Nature
ISBN: 9811505365
Category : Technology & Engineering
Languages : en
Pages : 526

Get Book Here

Book Description
This book presents recent advances in dynamics and control of different types of energy systems. It covers research on dynamics and control in energy systems from different aspects, namely, combustion, multiphase flow, nuclear, chemical and thermal. The chapters start from the basic concepts so that this book can be useful even for researchers with very little background in the area. A dedicated chapter provides an overview on the fundamental aspects of the dynamical systems approach. The book will be of use to researchers and professionals alike.

Instabilities, Chaos and Turbulence

Instabilities, Chaos and Turbulence PDF Author: Paul Manneville
Publisher: World Scientific
ISBN: 9781860944833
Category : Science
Languages : en
Pages : 416

Get Book Here

Book Description
This book is an introduction to the application of nonlinear dynamics to problems of stability, chaos and turbulence arising in continuous media and their connection to dynamical systems. With an emphasis on the understanding of basic concepts, it should be of interest to nearly any science-oriented undergraduate and potentially to anyone who wants to learn about recent advances in the field of applied nonlinear dynamics. Technicalities are, however, not completely avoided. They are instead explained as simply as possible using heuristic arguments and specific worked examples.

Photon Correlation Techniques in Fluid Mechanics

Photon Correlation Techniques in Fluid Mechanics PDF Author: E.O. Schulz-Dubois
Publisher: Springer
ISBN: 3540394931
Category : Science
Languages : en
Pages : 410

Get Book Here

Book Description
Photon correlation is a kind of spectroscopy designed to identify optical frequency shifts and line-broadening effects in the range of many MHz down to a few Hz. The optical intensity is measured in terms of single photon detection events which result in current pulses at the output of photomulti plier tubes. This signal is processed in real time in a special-purpose paral lel processor known as a correlator. The resulting photon correlation func tion, a function in the time domain, contains the desired spectral informa tion, which may be extracted by a suitable algorithm. Due to the non-intrusive nature and the sound theoretical basis of photon correlation, the phenomena under study are not disturbed, and the parameters in question can be precisely evaluated. For these reasons photon correlation has become a valuable and in many instances indispensable technique in two distinct fields. One of these is velocimetry in fluid flow. This includes hydro- and aerodynamic processes in liquids, gases, or flames where the velo city field may be stationary, time periodic, or turbulent, and may range from micrometers per second for motion inside biological cells to one kilometer per second for supersonic flow. The other major field is stochastic particle propagation due to Brownian motion.

Vortex Flows and Related Numerical Methods

Vortex Flows and Related Numerical Methods PDF Author: J.T. Beale
Publisher: Springer Science & Business Media
ISBN: 9401581371
Category : Technology & Engineering
Languages : en
Pages : 385

Get Book Here

Book Description
Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.

Buoyancy-Driven Flows

Buoyancy-Driven Flows PDF Author: Eric P. Chassignet
Publisher: Cambridge University Press
ISBN: 1107079993
Category : Science
Languages : en
Pages : 445

Get Book Here

Book Description
Buoyancy is one of the main forces driving flows on our planet, especially in the oceans and atmosphere. These flows range from buoyant coastal currents to dense overflows in the ocean, and from avalanches to volcanic pyroclastic flows on the Earth's surface. This book brings together contributions by leading world scientists to summarize our present theoretical, observational, experimental and modeling understanding of buoyancy-driven flows. Buoyancy-driven currents play a key role in the global ocean circulation and in climate variability through their impact on deep-water formation. Buoyancy-driven currents are also primarily responsible for the redistribution of fresh water throughout the world's oceans. This book is an invaluable resource for advanced students and researchers in oceanography, geophysical fluid dynamics, atmospheric science and the wider Earth sciences who need a state-of-the-art reference on buoyancy-driven flows.

Turbulent Buoyant Jets and Plumes

Turbulent Buoyant Jets and Plumes PDF Author: Wolfgang Rodi
Publisher: Elsevier
ISBN: 1483189872
Category : Technology & Engineering
Languages : en
Pages : 193

Get Book Here

Book Description
The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then examines a turbulence model for buoyant flows and its application to vertical buoyant jets, including mathematical model, calculation of vertical buoyant jets, and explanation of velocity and temperature spreading in pure jets and pure plumes. The publication is a dependable reference for scientists and readers interested in turbulent buoyant jets and plumes.

Recent Awards in Engineering

Recent Awards in Engineering PDF Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 986

Get Book Here

Book Description