Physical Design and Mask Synthesis for Directed Self-Assembly Lithography

Physical Design and Mask Synthesis for Directed Self-Assembly Lithography PDF Author: Seongbo Shim
Publisher: Springer
ISBN: 331976294X
Category : Technology & Engineering
Languages : en
Pages : 144

Get Book Here

Book Description
This book discusses physical design and mask synthesis of directed self-assembly lithography (DSAL). It covers the basic background of DSAL technology, physical design optimizations such as placement and redundant via insertion, and DSAL mask synthesis as well as its verification. Directed self-assembly lithography (DSAL) is a highly promising patterning solution in sub-7nm technology.

Physical Design and Mask Synthesis for Directed Self-Assembly Lithography

Physical Design and Mask Synthesis for Directed Self-Assembly Lithography PDF Author: Seongbo Shim
Publisher: Springer
ISBN: 331976294X
Category : Technology & Engineering
Languages : en
Pages : 144

Get Book Here

Book Description
This book discusses physical design and mask synthesis of directed self-assembly lithography (DSAL). It covers the basic background of DSAL technology, physical design optimizations such as placement and redundant via insertion, and DSAL mask synthesis as well as its verification. Directed self-assembly lithography (DSAL) is a highly promising patterning solution in sub-7nm technology.

Directed Self-assembly of Block Co-polymers for Nano-manufacturing

Directed Self-assembly of Block Co-polymers for Nano-manufacturing PDF Author: Roel Gronheid
Publisher: Woodhead Publishing
ISBN: 0081002610
Category : Technology & Engineering
Languages : en
Pages : 328

Get Book Here

Book Description
The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. - Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic - Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing - Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields

Updates in Advanced Lithography

Updates in Advanced Lithography PDF Author: Sumio Hosaka
Publisher: BoD – Books on Demand
ISBN: 9535111752
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
Advanced lithography grows up to several fields such as nano-lithography, micro electro-mechanical system (MEMS) and nano-phonics, etc. Nano-lithography reaches to 20 nm size in advanced electron device. Consequently, we have to study and develop true single nanometer size lithography. One of the solutions is to study a fusion of top down and bottom up technologies such as EB drawing and self-assembly with block copolymer. In MEMS and nano-photonics, 3 dimensional structures are needed to achieve some functions in the devices for the applications. Their formation are done by several methods such as colloid lithography, stereo-lithography, dry etching, sputtering, deposition, etc. This book covers a wide area regarding nano-lithography, nano structure and 3-dimensional structure, and introduces readers to the methods, methodology and its applications.

Advances in Nanostructured Materials and Nanopatterning Technologies

Advances in Nanostructured Materials and Nanopatterning Technologies PDF Author: Vincenzo Guarino
Publisher: Elsevier
ISBN: 0128173130
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
Advances in Nanostructured Materials and Nanopatterning Technologies: Applications for Healthcare, Environment and Energy demonstrates how to apply micro- and nanofabrication and bioextrusion based systems for cell printing, electrophoretic deposition, antimicrobial applications, and nanoparticles technologies for use in a range of green industry sectors, with an emphasis on emerging applications. - Details strategies to design and realize smart nanostructured/patterned substrates for healthcare and energy and environmental applications - Enables the preparation, characterization and fundamental understanding of nanostructured materials for promising applications in health, environmental and energy related sectors - Provides a broader view of the context around existing projects and techniques, including discussions on potential new routes for fabrication

Beyond the Molecular Frontier

Beyond the Molecular Frontier PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309168392
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.

Bioinspired Materials Science and Engineering

Bioinspired Materials Science and Engineering PDF Author: Guang Yang
Publisher: John Wiley & Sons
ISBN: 1119390338
Category : Technology & Engineering
Languages : en
Pages : 413

Get Book Here

Book Description
An authoritative introduction to the science and engineering of bioinspired materials Bioinspired Materials Science and Engineering offers a comprehensive view of the science and engineering of bioinspired materials and includes a discussion of biofabrication approaches and applications of bioinspired materials as they are fed back to nature in the guise of biomaterials. The authors also review some biological compounds and shows how they can be useful in the engineering of bioinspired materials. With contributions from noted experts in the field, this comprehensive resource considers biofabrication, biomacromolecules, and biomaterials. The authors illustrate the bioinspiration process from materials design and conception to application of bioinspired materials. In addition, the text presents the multidisciplinary aspect of the concept, and contains a typical example of how knowledge is acquired from nature, and how in turn this information contributes to biological sciences, with an accent on biomedical applications. This important resource: Offers an introduction to the science and engineering principles for the development of bioinspired materials Includes a summary of recent developments on biotemplated formation of inorganic materials using natural templates Illustrates the fabrication of 3D-tumor invasion models and their potential application in drug assessments Explores electroactive hydrogels based on natural polymers Contains information on turning mechanical properties of protein hydrogels for biomedical applications Written for chemists, biologists, physicists, and engineers, Bioinspired Materials Science and Engineering contains an indispensible resource for an understanding of bioinspired materials science and engineering.

VLSI Physical Design: From Graph Partitioning to Timing Closure

VLSI Physical Design: From Graph Partitioning to Timing Closure PDF Author: Andrew B. Kahng
Publisher: Springer Science & Business Media
ISBN: 9048195918
Category : Technology & Engineering
Languages : en
Pages : 310

Get Book Here

Book Description
Design and optimization of integrated circuits are essential to the creation of new semiconductor chips, and physical optimizations are becoming more prominent as a result of semiconductor scaling. Modern chip design has become so complex that it is largely performed by specialized software, which is frequently updated to address advances in semiconductor technologies and increased problem complexities. A user of such software needs a high-level understanding of the underlying mathematical models and algorithms. On the other hand, a developer of such software must have a keen understanding of computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. "VLSI Physical Design: From Graph Partitioning to Timing Closure" introduces and compares algorithms that are used during the physical design phase of integrated-circuit design, wherein a geometric chip layout is produced starting from an abstract circuit design. The emphasis is on essential and fundamental techniques, ranging from hypergraph partitioning and circuit placement to timing closure.

Points, Lines, and Walls

Points, Lines, and Walls PDF Author: Maurice Kléman
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 364

Get Book Here

Book Description


Advanced ASIC Chip Synthesis

Advanced ASIC Chip Synthesis PDF Author: Himanshu Bhatnagar
Publisher: Springer Science & Business Media
ISBN: 1441986685
Category : Technology & Engineering
Languages : en
Pages : 304

Get Book Here

Book Description
Advanced ASIC Chip Synthesis: Using Synopsys® Design Compiler® and PrimeTime® describes the advanced concepts and techniques used for ASIC chip synthesis, formal verification and static timing analysis, using the Synopsys suite of tools. In addition, the entire ASIC design flow methodology targeted for VDSM (Very-Deep-Sub-Micron) technologies is covered in detail. The emphasis of this book is on real-time application of Synopsys tools used to combat various problems seen at VDSM geometries. Readers will be exposed to an effective design methodology for handling complex, sub-micron ASIC designs. Significance is placed on HDL coding styles, synthesis and optimization, dynamic simulation, formal verification, DFT scan insertion, links to layout, and static timing analysis. At each step, problems related to each phase of the design flow are identified, with solutions and work-arounds described in detail. In addition, crucial issues related to layout, which includes clock tree synthesis and back-end integration (links to layout) are also discussed at length. Furthermore, the book contains in-depth discussions on the basics of Synopsys technology libraries and HDL coding styles, targeted towards optimal synthesis solutions. Advanced ASIC Chip Synthesis: Using Synopsys® Design Compiler® and PrimeTime® is intended for anyone who is involved in the ASIC design methodology, starting from RTL synthesis to final tape-out. Target audiences for this book are practicing ASIC design engineers and graduate students undertaking advanced courses in ASIC chip design and DFT techniques. From the Foreword: `This book, written by Himanshu Bhatnagar, provides a comprehensive overview of the ASIC design flow targeted for VDSM technologies using the Synopsis suite of tools. It emphasizes the practical issues faced by the semiconductor design engineer in terms of synthesis and the integration of front-end and back-end tools. Traditional design methodologies are challenged and unique solutions are offered to help define the next generation of ASIC design flows. The author provides numerous practical examples derived from real-world situations that will prove valuable to practicing ASIC design engineers as well as to students of advanced VLSI courses in ASIC design'. Dr Dwight W. Decker, Chairman and CEO, Conexant Systems, Inc., (Formerly, Rockwell Semiconductor Systems), Newport Beach, CA, USA.

Geometric Algorithms and Combinatorial Optimization

Geometric Algorithms and Combinatorial Optimization PDF Author: Martin Grötschel
Publisher: Springer Science & Business Media
ISBN: 3642978819
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.