Author: Warren Perry Mason
Publisher:
ISBN:
Category : Sound
Languages : en
Pages : 504
Book Description
Physical Acoustics: pt. A. Properties of Gases, liquids, and solutions
Author: Warren Perry Mason
Publisher:
ISBN:
Category : Sound
Languages : en
Pages : 504
Book Description
Publisher:
ISBN:
Category : Sound
Languages : en
Pages : 504
Book Description
Properties of Gases, Liquids, and Solutions
Author: Warren P. Mason
Publisher: Academic Press
ISBN: 1483275086
Category : Science
Languages : en
Pages : 495
Book Description
Physical Acoustics: Principles and Methods, Volume ll—Part A: Properties of Gases, Liquids, and Solutions ponders on high frequency sound waves in gases, liquids, and solids that have been proven as effective tools in examining the molecular, domain wall, and other types of motions. The selection first offers information on the transmission of sound waves in gases at very low pressures and the phenomenological theory of the relaxation phenomena in gases. Topics include free molecule propagation, phenomenological thermodynamics of irreversible processes, and simultaneous multiple relaxation processes. The book then takes a look at relaxation processes in gases, as well as excitation relaxation, molecular theory of relaxation times, and relaxation of a dissociation equilibrium. The manuscript surveys thermal, structural, and shear relaxation in liquids. Discussions focus on the basic theory for a single chemical reaction, structural viscosity, and cooperative effects on mechanical and dielectric processes. The book also underscores the propagation of ultrasonic waves in electrolytic solutions, including ultrasonic velocity and relaxation processes in electrolytic solutions. The selection is highly recommended for readers interested in physical acoustics.
Publisher: Academic Press
ISBN: 1483275086
Category : Science
Languages : en
Pages : 495
Book Description
Physical Acoustics: Principles and Methods, Volume ll—Part A: Properties of Gases, Liquids, and Solutions ponders on high frequency sound waves in gases, liquids, and solids that have been proven as effective tools in examining the molecular, domain wall, and other types of motions. The selection first offers information on the transmission of sound waves in gases at very low pressures and the phenomenological theory of the relaxation phenomena in gases. Topics include free molecule propagation, phenomenological thermodynamics of irreversible processes, and simultaneous multiple relaxation processes. The book then takes a look at relaxation processes in gases, as well as excitation relaxation, molecular theory of relaxation times, and relaxation of a dissociation equilibrium. The manuscript surveys thermal, structural, and shear relaxation in liquids. Discussions focus on the basic theory for a single chemical reaction, structural viscosity, and cooperative effects on mechanical and dielectric processes. The book also underscores the propagation of ultrasonic waves in electrolytic solutions, including ultrasonic velocity and relaxation processes in electrolytic solutions. The selection is highly recommended for readers interested in physical acoustics.
Physical Acoustics V16
Author: Warren P. Mason
Publisher: Elsevier
ISBN: 0323148190
Category : Technology & Engineering
Languages : en
Pages : 497
Book Description
Physical Acoustics: Principles and Methods reviews the principles and methods of physical acoustics and covers topics ranging from relaxation processes in sound propagation in fluids to acoustic vibrational modes in quartz crystals, along with electron and phonon drag on mobile dislocations in metals at low temperatures. Two-pulse phonon echoes in solid-state acoustics and memory echoes in powders are also discussed. Comprised of seven chapters, this volume begins with a historical account of relaxation processes in sound propagation, followed by an analysis of acoustic vibrational modes in quartz crystals. The reader is then introduced to electron and phonon drag on mobile dislocations at low temperatures, together with two-pulse phonon echoes in solid-state acoustics and dynamic polarization echoes in powdered materials. The book also considers memory echoes in powders before concluding with an evaluation of acousto-optic transduction mechanisms used in fiber optic acoustic sensors, together with their practical implementation. This book will be of interest to physicists.
Publisher: Elsevier
ISBN: 0323148190
Category : Technology & Engineering
Languages : en
Pages : 497
Book Description
Physical Acoustics: Principles and Methods reviews the principles and methods of physical acoustics and covers topics ranging from relaxation processes in sound propagation in fluids to acoustic vibrational modes in quartz crystals, along with electron and phonon drag on mobile dislocations in metals at low temperatures. Two-pulse phonon echoes in solid-state acoustics and memory echoes in powders are also discussed. Comprised of seven chapters, this volume begins with a historical account of relaxation processes in sound propagation, followed by an analysis of acoustic vibrational modes in quartz crystals. The reader is then introduced to electron and phonon drag on mobile dislocations at low temperatures, together with two-pulse phonon echoes in solid-state acoustics and dynamic polarization echoes in powdered materials. The book also considers memory echoes in powders before concluding with an evaluation of acousto-optic transduction mechanisms used in fiber optic acoustic sensors, together with their practical implementation. This book will be of interest to physicists.
Physical Acoustics V15
Author: Warren P. Mason
Publisher: Elsevier
ISBN: 0323152511
Category : Science
Languages : en
Pages : 393
Book Description
Physical Acoustics: Principles and Methods, Volume XV is a four-chapter text that covers the history of ultrasonics, interdigital transducers, theory of resonance scattering, and acoustic emission. Chapter 1 provides the history of ultrasonics and the developments of its application in crystal transducers, oscillators, selective wave filters, underwater sound, dentistry, and medicine. Chapter 2 is a comprehensive account of the use of circuit model analysis to design interdigital transducers (IDTs) for surface acoustic wave (SAW) devices. This chapter also looks into the total filter design problem for the important case of SAW filters composed solely of IDTs and matching circuits. Chapter 3 discusses the resonance scattering theory, its application to acoustic-and elastic-wave scattering, and the relevant experiments. Chapter 4 deals with the optical detection of acoustic emissions, acoustic emissions during various transformations, and dislocation effects. Researchers in the fields of electronics technology and applied and engineering mechanics will find this book invaluable.
Publisher: Elsevier
ISBN: 0323152511
Category : Science
Languages : en
Pages : 393
Book Description
Physical Acoustics: Principles and Methods, Volume XV is a four-chapter text that covers the history of ultrasonics, interdigital transducers, theory of resonance scattering, and acoustic emission. Chapter 1 provides the history of ultrasonics and the developments of its application in crystal transducers, oscillators, selective wave filters, underwater sound, dentistry, and medicine. Chapter 2 is a comprehensive account of the use of circuit model analysis to design interdigital transducers (IDTs) for surface acoustic wave (SAW) devices. This chapter also looks into the total filter design problem for the important case of SAW filters composed solely of IDTs and matching circuits. Chapter 3 discusses the resonance scattering theory, its application to acoustic-and elastic-wave scattering, and the relevant experiments. Chapter 4 deals with the optical detection of acoustic emissions, acoustic emissions during various transformations, and dislocation effects. Researchers in the fields of electronics technology and applied and engineering mechanics will find this book invaluable.
Physical Acoustics V13
Author: Warren P. Mason
Publisher: Elsevier
ISBN: 0323157181
Category : Science
Languages : en
Pages : 297
Book Description
Physical Acoustics: Principles and Methods, Volume XIII is a six-chapter text that covers a variety of topics in physical acoustics, including the principles of ultrasonic waves, plate modes, diffraction, mode vibrators, ray theory, and acoustic emission. Chapter 1 deals with the theory and application of anelasticity in studying various types of relaxations, such as point defect, grain-boundary, thermoelastic, phonon and electron relaxations, and magnetic relaxations. Chapter 2 presents the different methods used in studying the very important Type II superconductor materials. Chapter 3 surveys the plate modes in surface acoustic wave devices and the theory needed to understand plate modes in piezoelectric media, as well as to eliminate or reduce their effect on the response. Chapter 4 tackles the ways of predicting diffraction loss and phase distortion, and discusses the alleviation of diffraction effects by acoustic beam shaping, material selection and orientation, and alterations in the transducer structure. Chapter 5 examines plate vibrators whose thickness direction has an arbitrary crystallographic orientation and the tools for the analysis of the properties of doubly rotated cuts, with special emphasis on such cuts in quartz, berlinite, lithium tantalate, and lithium niobate. Chapter 6 discusses generalized ray theory and transient responses of layered elastic solids. This book will be of great value to researchers in the fields of electronics technology and applied and engineering mechanics.
Publisher: Elsevier
ISBN: 0323157181
Category : Science
Languages : en
Pages : 297
Book Description
Physical Acoustics: Principles and Methods, Volume XIII is a six-chapter text that covers a variety of topics in physical acoustics, including the principles of ultrasonic waves, plate modes, diffraction, mode vibrators, ray theory, and acoustic emission. Chapter 1 deals with the theory and application of anelasticity in studying various types of relaxations, such as point defect, grain-boundary, thermoelastic, phonon and electron relaxations, and magnetic relaxations. Chapter 2 presents the different methods used in studying the very important Type II superconductor materials. Chapter 3 surveys the plate modes in surface acoustic wave devices and the theory needed to understand plate modes in piezoelectric media, as well as to eliminate or reduce their effect on the response. Chapter 4 tackles the ways of predicting diffraction loss and phase distortion, and discusses the alleviation of diffraction effects by acoustic beam shaping, material selection and orientation, and alterations in the transducer structure. Chapter 5 examines plate vibrators whose thickness direction has an arbitrary crystallographic orientation and the tools for the analysis of the properties of doubly rotated cuts, with special emphasis on such cuts in quartz, berlinite, lithium tantalate, and lithium niobate. Chapter 6 discusses generalized ray theory and transient responses of layered elastic solids. This book will be of great value to researchers in the fields of electronics technology and applied and engineering mechanics.
Physical Acoustics V14
Author: Warren P. Mason
Publisher: Elsevier
ISBN: 0323145450
Category : Science
Languages : en
Pages : 577
Book Description
Physical Acoustics: Principles and Methods, Volume XIV is a five-chapter text that covers significant studies on acoustic microscopy, sound propagation in liquid crystals, ultrasonic transducers, and ultrasonic flowmeters. The opening chapter discusses techniques of acoustic microscopy, aberration and resolution performance, acoustic lens transfer functions, antireflection coatings, and both transmission and reflection acoustic microscopy. The following chapter deals with the applications to the states called liquid crystals or anisotropic liquids, states in which the material flows but yet has a long-range order that makes it macroscopically anisotropic. The third chapter focuses on the principles and practical applications of electromagnetic transducers for both surface waves and bulk waves. The fourth chapter surveys first the characterization of ultrasonic transducers for materials testing and then compares actual responses to those of an ""ideal"" transducer, elaborating on the many important factors that affect the results obtained with an ultrasonic testing system. The final chapter explains the principles underlying ultrasonic measurements of flow, specifically covering eight different categories of ultrasonic flow measurement principles and their industrial applications indicated. This book will be of great value to researchers in their fields of electronics technology and applied and engineering mechanics.
Publisher: Elsevier
ISBN: 0323145450
Category : Science
Languages : en
Pages : 577
Book Description
Physical Acoustics: Principles and Methods, Volume XIV is a five-chapter text that covers significant studies on acoustic microscopy, sound propagation in liquid crystals, ultrasonic transducers, and ultrasonic flowmeters. The opening chapter discusses techniques of acoustic microscopy, aberration and resolution performance, acoustic lens transfer functions, antireflection coatings, and both transmission and reflection acoustic microscopy. The following chapter deals with the applications to the states called liquid crystals or anisotropic liquids, states in which the material flows but yet has a long-range order that makes it macroscopically anisotropic. The third chapter focuses on the principles and practical applications of electromagnetic transducers for both surface waves and bulk waves. The fourth chapter surveys first the characterization of ultrasonic transducers for materials testing and then compares actual responses to those of an ""ideal"" transducer, elaborating on the many important factors that affect the results obtained with an ultrasonic testing system. The final chapter explains the principles underlying ultrasonic measurements of flow, specifically covering eight different categories of ultrasonic flow measurement principles and their industrial applications indicated. This book will be of great value to researchers in their fields of electronics technology and applied and engineering mechanics.
Physical Acoustics V11
Author: Warren P. Mason
Publisher: Elsevier
ISBN: 0323153283
Category : Science
Languages : en
Pages : 378
Book Description
Physical Acoustics: Principles and Methods reviews the principles and methods of physical acoustics and covers topics ranging from third sound in superfluid helium films to the method of matched asymptotic expansions (MAE). Ultrasonic diffraction from single apertures and its application to pulse measurements and crystal physics are also discussed, together with elastic surface wave devices, acoustic emission, and nonlinear effects in piezoelectric quartz crystals. Comprised of six chapters, this volume begins with a detailed treatment of the theory of third sound in superfluid helium films, third sound resonators, and many other properties. The second chapter is devoted to the MAE method, with emphasis on its ability to produce results in acoustics and to provide insight into classical problems. Subsequent chapters deal with bulk and surface waves; phase coded signals and their generation and detection by interdigital grid structures; elastic surface wave devices such as pulse compression filters; and nonlinear effects in quartz crystals. The final chapter describes acoustic emission and the noise produced in materials when they are strained. This book will be of interest to physicists.
Publisher: Elsevier
ISBN: 0323153283
Category : Science
Languages : en
Pages : 378
Book Description
Physical Acoustics: Principles and Methods reviews the principles and methods of physical acoustics and covers topics ranging from third sound in superfluid helium films to the method of matched asymptotic expansions (MAE). Ultrasonic diffraction from single apertures and its application to pulse measurements and crystal physics are also discussed, together with elastic surface wave devices, acoustic emission, and nonlinear effects in piezoelectric quartz crystals. Comprised of six chapters, this volume begins with a detailed treatment of the theory of third sound in superfluid helium films, third sound resonators, and many other properties. The second chapter is devoted to the MAE method, with emphasis on its ability to produce results in acoustics and to provide insight into classical problems. Subsequent chapters deal with bulk and surface waves; phase coded signals and their generation and detection by interdigital grid structures; elastic surface wave devices such as pulse compression filters; and nonlinear effects in quartz crystals. The final chapter describes acoustic emission and the noise produced in materials when they are strained. This book will be of interest to physicists.
Physical Acoustics
Author: Warren P. Mason
Publisher: Academic Press
ISBN: 148327439X
Category : Science
Languages : en
Pages : 532
Book Description
Physical Acoustics: Principles and Methods, Volume l—Part A focuses on high frequency sound waves in gases, liquids, and solids that have been proven as powerful tools in analyzing the molecular, defect, domain wall, and other types of motions. The selection first tackles wave propagation in fluids and normal solids and guided wave propagation in elongated cylinders and plates. Discussions focus on fundamentals of continuum mechanics; small-amplitude waves in a linear viscoelastic medium; representation of oscillations and waves; and special effects associated with guided elastic waves in plates and cylinders. The book also touches on piezoelectric and piezomagnetic materials and their functions in transducers, including polycrystalline ferroelectrics, equations of the piezoelectric medium, and equivalent circuits. The publication takes a look at ultrasonic methods for measuring the mechanical properties of liquids and solids and the use of piezoelectric crystals and mechanical resonators in filters and oscillators. The text then ponders on guided wave ultrasonic delay lines and multiple reflection ultrasonic delay lines, as well as transmission of sound waves in solids, torsional mode delay lines, and transducer considerations. The selection is a valuable reference for readers interested in physical acoustics.
Publisher: Academic Press
ISBN: 148327439X
Category : Science
Languages : en
Pages : 532
Book Description
Physical Acoustics: Principles and Methods, Volume l—Part A focuses on high frequency sound waves in gases, liquids, and solids that have been proven as powerful tools in analyzing the molecular, defect, domain wall, and other types of motions. The selection first tackles wave propagation in fluids and normal solids and guided wave propagation in elongated cylinders and plates. Discussions focus on fundamentals of continuum mechanics; small-amplitude waves in a linear viscoelastic medium; representation of oscillations and waves; and special effects associated with guided elastic waves in plates and cylinders. The book also touches on piezoelectric and piezomagnetic materials and their functions in transducers, including polycrystalline ferroelectrics, equations of the piezoelectric medium, and equivalent circuits. The publication takes a look at ultrasonic methods for measuring the mechanical properties of liquids and solids and the use of piezoelectric crystals and mechanical resonators in filters and oscillators. The text then ponders on guided wave ultrasonic delay lines and multiple reflection ultrasonic delay lines, as well as transmission of sound waves in solids, torsional mode delay lines, and transducer considerations. The selection is a valuable reference for readers interested in physical acoustics.
Physical Acoustics V6
Author: Warren P. Mason
Publisher: Elsevier
ISBN: 0323151671
Category : Science
Languages : en
Pages : 409
Book Description
Physical Acoustics: Principles and Methods, Volume VI provides five chapters covering the whole of physical acoustics. The first chapter extends the methods for studying high frequency sound waves in the hypersonic range by the technique of Brillouin scattering. The next chapter discusses the acoustic properties of materials of the perovskite structure. These materials have ""soft"" modes, which are transverse optic modes of the phonon spectrum that have unusually low and strongly temperature dependent frequencies. This chapter expounds the influence of the soft modes, with particular attention to potassium tantalate and strontium titanate. The third chapter gives a theoretical treatment of the properties and possibilities of surface waves in crystals that are becoming of increasing interest for delay lines, amplifiers of sound waves, and other practical applications. The fourth chapter discusses the experimental methods and results of the dynamic shear properties of solvents and polystyrene solutions from 20 to 300 MHz, including a description of its materials and steady-flow properties. The final chapter deals with condensed helium, which requires quantum reactions to account for its properties. While the experimental data on solid helium are still insufficient, this chapter gives both a theoretical and an experimental account of sound propagation in solid helium, including various liquid forms. This book is recommended to both students and physicists conducting research on physical acoustics.
Publisher: Elsevier
ISBN: 0323151671
Category : Science
Languages : en
Pages : 409
Book Description
Physical Acoustics: Principles and Methods, Volume VI provides five chapters covering the whole of physical acoustics. The first chapter extends the methods for studying high frequency sound waves in the hypersonic range by the technique of Brillouin scattering. The next chapter discusses the acoustic properties of materials of the perovskite structure. These materials have ""soft"" modes, which are transverse optic modes of the phonon spectrum that have unusually low and strongly temperature dependent frequencies. This chapter expounds the influence of the soft modes, with particular attention to potassium tantalate and strontium titanate. The third chapter gives a theoretical treatment of the properties and possibilities of surface waves in crystals that are becoming of increasing interest for delay lines, amplifiers of sound waves, and other practical applications. The fourth chapter discusses the experimental methods and results of the dynamic shear properties of solvents and polystyrene solutions from 20 to 300 MHz, including a description of its materials and steady-flow properties. The final chapter deals with condensed helium, which requires quantum reactions to account for its properties. While the experimental data on solid helium are still insufficient, this chapter gives both a theoretical and an experimental account of sound propagation in solid helium, including various liquid forms. This book is recommended to both students and physicists conducting research on physical acoustics.
Physical Acoustics V2B
Author: Warren P. Mason
Publisher: Elsevier
ISBN: 0323151949
Category : Science
Languages : en
Pages : 405
Book Description
Physical Acoustics: Principles and Methods, Volume II, Part B: Properties of Polymers and Nonlinear Acoustics presents the applications of the methods for detecting and generating sound waves. This book deals with more closely packed materials than found in liquid, which retain the ability to perform some atomic movements. Comprised of six chapters, this volume starts with an overview of the significant method for measuring nonlinearities in liquids and solids in the light diffraction method. This text then describes the basic generalization of linear viscoelastic theory, which is the only theory with enough power, range, and simplicity to be of use in relating the mechanical properties as a whole. Other chapters consider the phenomena that are observed during time-dependent dilatation of amorphous polymers and discuss the relationship of this behavior to that observed during shearing deformation. The final chapter deals with the distortion of the ultrasonic waveform arising from nonlinearity. Physicists and researchers will find this book useful.
Publisher: Elsevier
ISBN: 0323151949
Category : Science
Languages : en
Pages : 405
Book Description
Physical Acoustics: Principles and Methods, Volume II, Part B: Properties of Polymers and Nonlinear Acoustics presents the applications of the methods for detecting and generating sound waves. This book deals with more closely packed materials than found in liquid, which retain the ability to perform some atomic movements. Comprised of six chapters, this volume starts with an overview of the significant method for measuring nonlinearities in liquids and solids in the light diffraction method. This text then describes the basic generalization of linear viscoelastic theory, which is the only theory with enough power, range, and simplicity to be of use in relating the mechanical properties as a whole. Other chapters consider the phenomena that are observed during time-dependent dilatation of amorphous polymers and discuss the relationship of this behavior to that observed during shearing deformation. The final chapter deals with the distortion of the ultrasonic waveform arising from nonlinearity. Physicists and researchers will find this book useful.