Author: Edmund Husserl
Publisher: Springer Science & Business Media
ISBN: 9401000603
Category : Mathematics
Languages : en
Pages : 558
Book Description
This volume is a window on a period of rich and illuminating philosophical activity that has been rendered generally inaccessible by the supposed "revolution" attributed to "Analytic Philosophy" so-called. Careful exposition and critique is given to every serious alternative account of number and number relations available at the time.
Philosophy of Arithmetic
Author: Edmund Husserl
Publisher: Springer Science & Business Media
ISBN: 9401000603
Category : Mathematics
Languages : en
Pages : 558
Book Description
This volume is a window on a period of rich and illuminating philosophical activity that has been rendered generally inaccessible by the supposed "revolution" attributed to "Analytic Philosophy" so-called. Careful exposition and critique is given to every serious alternative account of number and number relations available at the time.
Publisher: Springer Science & Business Media
ISBN: 9401000603
Category : Mathematics
Languages : en
Pages : 558
Book Description
This volume is a window on a period of rich and illuminating philosophical activity that has been rendered generally inaccessible by the supposed "revolution" attributed to "Analytic Philosophy" so-called. Careful exposition and critique is given to every serious alternative account of number and number relations available at the time.
The Foundations of Arithmetic
Author: Gottlob Frege
Publisher: John Wiley & Sons
ISBN: 0631126945
Category : Mathematics
Languages : en
Pages : 146
Book Description
A philosophical discussion of the concept of number In the book, The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, Gottlob Frege explains the central notions of his philosophy and analyzes the perspectives of predecessors and contemporaries. The book is the first philosophically relevant discussion of the concept of number in Western civilization. The work went on to significantly influence philosophy and mathematics. Frege was a German mathematician and philosopher who published the text in 1884, which seeks to define the concept of a number. It was later translated into English. This is the revised second edition.
Publisher: John Wiley & Sons
ISBN: 0631126945
Category : Mathematics
Languages : en
Pages : 146
Book Description
A philosophical discussion of the concept of number In the book, The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, Gottlob Frege explains the central notions of his philosophy and analyzes the perspectives of predecessors and contemporaries. The book is the first philosophically relevant discussion of the concept of number in Western civilization. The work went on to significantly influence philosophy and mathematics. Frege was a German mathematician and philosopher who published the text in 1884, which seeks to define the concept of a number. It was later translated into English. This is the revised second edition.
Arithmetic and Ontology
Author: Philip Hugly
Publisher: BRILL
ISBN: 9004333681
Category : Philosophy
Languages : en
Pages : 397
Book Description
This volume documents a lively exchange between five philosophers of mathematics. It also introduces a new voice in one central debate in the philosophy of mathematics. Non-realism, i.e., the view supported by Hugly and Sayward in their monograph, is an original position distinct from the widely known realism and anti-realism. Non-realism is characterized by the rejection of a central assumption shared by many realists and anti-realists, i.e., the assumption that mathematical statements purport to refer to objects. The defense of their main argument for the thesis that arithmetic lacks ontology brings the authors to discuss also the controversial contrast between pure and empirical arithmetical discourse. Colin Cheyne, Sanford Shieh, and Jean Paul Van Bendegem, each coming from a different perspective, test the genuine originality of non-realism and raise objections to it. Novel interpretations of well-known arguments, e.g., the indispensability argument, and historical views, e.g. Frege, are interwoven with the development of the authors’ account. The discussion of the often neglected views of Wittgenstein and Prior provide an interesting and much needed contribution to the current debate in the philosophy of mathematics.
Publisher: BRILL
ISBN: 9004333681
Category : Philosophy
Languages : en
Pages : 397
Book Description
This volume documents a lively exchange between five philosophers of mathematics. It also introduces a new voice in one central debate in the philosophy of mathematics. Non-realism, i.e., the view supported by Hugly and Sayward in their monograph, is an original position distinct from the widely known realism and anti-realism. Non-realism is characterized by the rejection of a central assumption shared by many realists and anti-realists, i.e., the assumption that mathematical statements purport to refer to objects. The defense of their main argument for the thesis that arithmetic lacks ontology brings the authors to discuss also the controversial contrast between pure and empirical arithmetical discourse. Colin Cheyne, Sanford Shieh, and Jean Paul Van Bendegem, each coming from a different perspective, test the genuine originality of non-realism and raise objections to it. Novel interpretations of well-known arguments, e.g., the indispensability argument, and historical views, e.g. Frege, are interwoven with the development of the authors’ account. The discussion of the often neglected views of Wittgenstein and Prior provide an interesting and much needed contribution to the current debate in the philosophy of mathematics.
The Social Life of Numbers
Author: Gary Urton
Publisher: University of Texas Press
ISBN: 0292786840
Category : Social Science
Languages : en
Pages : 294
Book Description
Unraveling all the mysteries of the khipu--the knotted string device used by the Inka to record both statistical data and narrative accounts of myths, histories, and genealogies--will require an understanding of how number values and relations may have been used to encode information on social, familial, and political relationships and structures. This is the problem Gary Urton tackles in his pathfinding study of the origin, meaning, and significance of numbers and the philosophical principles underlying the practice of arithmetic among Quechua-speaking peoples of the Andes. Based on fieldwork in communities around Sucre, in south-central Bolivia, Urton argues that the origin and meaning of numbers were and are conceived of by Quechua-speaking peoples in ways similar to their ideas about, and formulations of, gender, age, and social relations. He also demonstrates that their practice of arithmetic is based on a well-articulated body of philosophical principles and values that reflects a continuous attempt to maintain balance, harmony, and equilibrium in the material, social, and moral spheres of community life.
Publisher: University of Texas Press
ISBN: 0292786840
Category : Social Science
Languages : en
Pages : 294
Book Description
Unraveling all the mysteries of the khipu--the knotted string device used by the Inka to record both statistical data and narrative accounts of myths, histories, and genealogies--will require an understanding of how number values and relations may have been used to encode information on social, familial, and political relationships and structures. This is the problem Gary Urton tackles in his pathfinding study of the origin, meaning, and significance of numbers and the philosophical principles underlying the practice of arithmetic among Quechua-speaking peoples of the Andes. Based on fieldwork in communities around Sucre, in south-central Bolivia, Urton argues that the origin and meaning of numbers were and are conceived of by Quechua-speaking peoples in ways similar to their ideas about, and formulations of, gender, age, and social relations. He also demonstrates that their practice of arithmetic is based on a well-articulated body of philosophical principles and values that reflects a continuous attempt to maintain balance, harmony, and equilibrium in the material, social, and moral spheres of community life.
Introduction to Mathematical Philosophy
Author: Bertrand Russell
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
Philosophy of Mathematics
Author: David Bostock
Publisher: John Wiley & Sons
ISBN: 1405189924
Category : Mathematics
Languages : en
Pages : 345
Book Description
Philosophy of Mathematics: An Introduction provides a critical analysis of the major philosophical issues and viewpoints in the concepts and methods of mathematics - from antiquity to the modern era. Offers beginning readers a critical appraisal of philosophical viewpoints throughout history Gives a separate chapter to predicativism, which is often (but wrongly) treated as if it were a part of logicism Provides readers with a non-partisan discussion until the final chapter, which gives the author's personal opinion on where the truth lies Designed to be accessible to both undergraduates and graduate students, and at the same time to be of interest to professionals
Publisher: John Wiley & Sons
ISBN: 1405189924
Category : Mathematics
Languages : en
Pages : 345
Book Description
Philosophy of Mathematics: An Introduction provides a critical analysis of the major philosophical issues and viewpoints in the concepts and methods of mathematics - from antiquity to the modern era. Offers beginning readers a critical appraisal of philosophical viewpoints throughout history Gives a separate chapter to predicativism, which is often (but wrongly) treated as if it were a part of logicism Provides readers with a non-partisan discussion until the final chapter, which gives the author's personal opinion on where the truth lies Designed to be accessible to both undergraduates and graduate students, and at the same time to be of interest to professionals
Philosophy of Mathematics
Author: Stewart Shapiro
Publisher: Oxford University Press
ISBN: 0190282525
Category : Philosophy
Languages : en
Pages : 290
Book Description
Do numbers, sets, and so forth, exist? What do mathematical statements mean? Are they literally true or false, or do they lack truth values altogether? Addressing questions that have attracted lively debate in recent years, Stewart Shapiro contends that standard realist and antirealist accounts of mathematics are both problematic. As Benacerraf first noted, we are confronted with the following powerful dilemma. The desired continuity between mathematical and, say, scientific language suggests realism, but realism in this context suggests seemingly intractable epistemic problems. As a way out of this dilemma, Shapiro articulates a structuralist approach. On this view, the subject matter of arithmetic, for example, is not a fixed domain of numbers independent of each other, but rather is the natural number structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle. Using this framework, realism in mathematics can be preserved without troublesome epistemic consequences. Shapiro concludes by showing how a structuralist approach can be applied to wider philosophical questions such as the nature of an "object" and the Quinean nature of ontological commitment. Clear, compelling, and tautly argued, Shapiro's work, noteworthy both in its attempt to develop a full-length structuralist approach to mathematics and to trace its emergence in the history of mathematics, will be of deep interest to both philosophers and mathematicians.
Publisher: Oxford University Press
ISBN: 0190282525
Category : Philosophy
Languages : en
Pages : 290
Book Description
Do numbers, sets, and so forth, exist? What do mathematical statements mean? Are they literally true or false, or do they lack truth values altogether? Addressing questions that have attracted lively debate in recent years, Stewart Shapiro contends that standard realist and antirealist accounts of mathematics are both problematic. As Benacerraf first noted, we are confronted with the following powerful dilemma. The desired continuity between mathematical and, say, scientific language suggests realism, but realism in this context suggests seemingly intractable epistemic problems. As a way out of this dilemma, Shapiro articulates a structuralist approach. On this view, the subject matter of arithmetic, for example, is not a fixed domain of numbers independent of each other, but rather is the natural number structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle. Using this framework, realism in mathematics can be preserved without troublesome epistemic consequences. Shapiro concludes by showing how a structuralist approach can be applied to wider philosophical questions such as the nature of an "object" and the Quinean nature of ontological commitment. Clear, compelling, and tautly argued, Shapiro's work, noteworthy both in its attempt to develop a full-length structuralist approach to mathematics and to trace its emergence in the history of mathematics, will be of deep interest to both philosophers and mathematicians.
Philosophy of Mathematics
Author: Paul Benacerraf
Publisher: Cambridge University Press
ISBN: 1107268133
Category : Science
Languages : en
Pages : 604
Book Description
The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.
Publisher: Cambridge University Press
ISBN: 1107268133
Category : Science
Languages : en
Pages : 604
Book Description
The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.
From Kant to Husserl
Author: Charles Parsons
Publisher: Harvard University Press
ISBN: 0674065425
Category : Philosophy
Languages : en
Pages : 257
Book Description
In From Kant to Husserl, Charles Parsons examines a wide range of historical opinion on philosophical questions from mathematics to phenomenology. Amplifying his early ideas on Kant’s philosophy of arithmetic, the author then turns to reflections on Frege, Brentano, and Husserl.
Publisher: Harvard University Press
ISBN: 0674065425
Category : Philosophy
Languages : en
Pages : 257
Book Description
In From Kant to Husserl, Charles Parsons examines a wide range of historical opinion on philosophical questions from mathematics to phenomenology. Amplifying his early ideas on Kant’s philosophy of arithmetic, the author then turns to reflections on Frege, Brentano, and Husserl.
Philosophy of Mathematics and Deductive Structure in Euclid's Elements
Author: Ian Mueller
Publisher: Courier Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 404
Book Description
A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions -- rather than focusing strictly on historical and mathematical issues -- and features several helpful appendixes.
Publisher: Courier Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 404
Book Description
A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions -- rather than focusing strictly on historical and mathematical issues -- and features several helpful appendixes.