Author: Gottlob Frege
Publisher:
ISBN: 9780226261973
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 288
Book Description
Philosophical and Mathematical Correspondence
Author: Gottlob Frege
Publisher:
ISBN: 9780226261973
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 288
Book Description
Publisher:
ISBN: 9780226261973
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 288
Book Description
Philosophical and Mathematical Correspondence
Author: Gottlob Frege
Publisher:
ISBN: 9780226261973
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 288
Book Description
Publisher:
ISBN: 9780226261973
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 288
Book Description
Frege's Philosophy of Mathematics
Author: William Demopoulos
Publisher: Harvard University Press
ISBN: 9780674319424
Category : Mathematics
Languages : en
Pages : 492
Book Description
Widespread interest in Frege's general philosophical writings is, relatively speaking, a fairly recent phenomenon. But it is only very recently that his philosophy of mathematics has begun to attract the attention it now enjoys. This interest has been elicited by the discovery of the remarkable mathematical properties of Frege's contextual definition of number and of the unique character of his proposals for a theory of the real numbers. This collection of essays addresses three main developments in recent work on Frege's philosophy of mathematics: the emerging interest in the intellectual background to his logicism; the rediscovery of Frege's theorem; and the reevaluation of the mathematical content of The Basic Laws of Arithmetic. Each essay attempts a sympathetic, if not uncritical, reconstruction, evaluation, or extension of a facet of Frege's theory of arithmetic. Together they form an accessible and authoritative introduction to aspects of Frege's thought that have, until now, been largely missed by the philosophical community.
Publisher: Harvard University Press
ISBN: 9780674319424
Category : Mathematics
Languages : en
Pages : 492
Book Description
Widespread interest in Frege's general philosophical writings is, relatively speaking, a fairly recent phenomenon. But it is only very recently that his philosophy of mathematics has begun to attract the attention it now enjoys. This interest has been elicited by the discovery of the remarkable mathematical properties of Frege's contextual definition of number and of the unique character of his proposals for a theory of the real numbers. This collection of essays addresses three main developments in recent work on Frege's philosophy of mathematics: the emerging interest in the intellectual background to his logicism; the rediscovery of Frege's theorem; and the reevaluation of the mathematical content of The Basic Laws of Arithmetic. Each essay attempts a sympathetic, if not uncritical, reconstruction, evaluation, or extension of a facet of Frege's theory of arithmetic. Together they form an accessible and authoritative introduction to aspects of Frege's thought that have, until now, been largely missed by the philosophical community.
Collected Papers on Mathematics, Logic, and Philosophy
Author: Gottlob Frege
Publisher: Wiley-Blackwell
ISBN: 9780631127284
Category : Philosophy
Languages : en
Pages : 422
Book Description
Publisher: Wiley-Blackwell
ISBN: 9780631127284
Category : Philosophy
Languages : en
Pages : 422
Book Description
Fixing Frege
Author: John P. Burgess
Publisher: Princeton University Press
ISBN: 9780691122311
Category : Mathematics
Languages : en
Pages : 276
Book Description
Gottlob Frege's attempt to found mathematics on a grand logical system came to grief when Bertrand Russell discovered a contradiction in it. This book surveys consistent restrictions in both the old and new versions of Frege's system, determining just how much of mathematics can be reconstructed in each.
Publisher: Princeton University Press
ISBN: 9780691122311
Category : Mathematics
Languages : en
Pages : 276
Book Description
Gottlob Frege's attempt to found mathematics on a grand logical system came to grief when Bertrand Russell discovered a contradiction in it. This book surveys consistent restrictions in both the old and new versions of Frege's system, determining just how much of mathematics can be reconstructed in each.
Deleuze and the History of Mathematics
Author: Simon Duffy
Publisher: A&C Black
ISBN: 1441113894
Category : Philosophy
Languages : en
Pages : 225
Book Description
Gilles Deleuze's engagements with mathematics, replete in his work, rely upon the construction of alternative lineages in the history of mathematics, which challenge some of the self imposed limits that regulate the canonical concepts of the discipline. For Deleuze, these challenges provide an opportunity to reconfigure particular philosophical problems - for example, the problem of individuation - and to develop new concepts in response to them. The highly original research presented in this book explores the mathematical construction of Deleuze's philosophy, as well as addressing the undervalued and often neglected question of the mathematical thinkers who influenced his work. In the wake of Alain Badiou's recent and seemingly devastating attack on the way the relation between mathematics and philosophy is configured in Deleuze's work, Simon B.Duffy offers a robust defence of the structure of Deleuze's philosophy and, in particular, the adequacy of the mathematical problems used in its construction. By reconciling Badiou and Deleuze's seemingly incompatible engagements with mathematics, Duffy succeeds in presenting a solid foundation for Deleuze's philosophy, rebuffing the recent challenges against it.
Publisher: A&C Black
ISBN: 1441113894
Category : Philosophy
Languages : en
Pages : 225
Book Description
Gilles Deleuze's engagements with mathematics, replete in his work, rely upon the construction of alternative lineages in the history of mathematics, which challenge some of the self imposed limits that regulate the canonical concepts of the discipline. For Deleuze, these challenges provide an opportunity to reconfigure particular philosophical problems - for example, the problem of individuation - and to develop new concepts in response to them. The highly original research presented in this book explores the mathematical construction of Deleuze's philosophy, as well as addressing the undervalued and often neglected question of the mathematical thinkers who influenced his work. In the wake of Alain Badiou's recent and seemingly devastating attack on the way the relation between mathematics and philosophy is configured in Deleuze's work, Simon B.Duffy offers a robust defence of the structure of Deleuze's philosophy and, in particular, the adequacy of the mathematical problems used in its construction. By reconciling Badiou and Deleuze's seemingly incompatible engagements with mathematics, Duffy succeeds in presenting a solid foundation for Deleuze's philosophy, rebuffing the recent challenges against it.
Truth as One and Many
Author: Michael P. Lynch
Publisher: OUP Oxford
ISBN: 0191615765
Category : Philosophy
Languages : en
Pages : 414
Book Description
What is truth? Michael Lynch defends a bold new answer to this question. Traditional theories of truth hold that truth has only a single uniform nature. All truths are true in the same way. More recent deflationary theories claim that truth has no nature at all; the concept of truth is of no real philosophical importance. In this concise and clearly written book, Lynch argues that we should reject both these extremes and hold that truth is a functional property. To understand truth we must understand what it does, its function in our cognitive economy. Once we understand that, we'll see that this function can be performed in more than one way. And that in turn opens the door to an appealing pluralism: beliefs about the concrete physical world needn't be true in the same way as our thoughts about matters -- like morality -- where the human stain is deepest.
Publisher: OUP Oxford
ISBN: 0191615765
Category : Philosophy
Languages : en
Pages : 414
Book Description
What is truth? Michael Lynch defends a bold new answer to this question. Traditional theories of truth hold that truth has only a single uniform nature. All truths are true in the same way. More recent deflationary theories claim that truth has no nature at all; the concept of truth is of no real philosophical importance. In this concise and clearly written book, Lynch argues that we should reject both these extremes and hold that truth is a functional property. To understand truth we must understand what it does, its function in our cognitive economy. Once we understand that, we'll see that this function can be performed in more than one way. And that in turn opens the door to an appealing pluralism: beliefs about the concrete physical world needn't be true in the same way as our thoughts about matters -- like morality -- where the human stain is deepest.
Husserl Or Frege?
Author: Claire Ortiz Hill
Publisher: Open Court Publishing
ISBN: 9780812694178
Category : Mathematics
Languages : en
Pages : 354
Book Description
Most areas of philosopher Edmund Husserl’s thought have been explored, but his views on logic, mathematics, and semantics have been largely ignored. These essays offer an alternative to discussions of the philosophy of contemporary mathematics. The book covers areas of disagreement between Husserl and Gottlob Frege, the father of analytical philosophy, and explores new perspectives seen in their work.
Publisher: Open Court Publishing
ISBN: 9780812694178
Category : Mathematics
Languages : en
Pages : 354
Book Description
Most areas of philosopher Edmund Husserl’s thought have been explored, but his views on logic, mathematics, and semantics have been largely ignored. These essays offer an alternative to discussions of the philosophy of contemporary mathematics. The book covers areas of disagreement between Husserl and Gottlob Frege, the father of analytical philosophy, and explores new perspectives seen in their work.
Isaac Newton on Mathematical Certainty and Method
Author: Niccolo Guicciardini
Publisher: MIT Press
ISBN: 0262291657
Category : Mathematics
Languages : en
Pages : 449
Book Description
An analysis of Newton's mathematical work, from early discoveries to mature reflections, and a discussion of Newton's views on the role and nature of mathematics. Historians of mathematics have devoted considerable attention to Isaac Newton's work on algebra, series, fluxions, quadratures, and geometry. In Isaac Newton on Mathematical Certainty and Method, Niccolò Guicciardini examines a critical aspect of Newton's work that has not been tightly connected to Newton's actual practice: his philosophy of mathematics. Newton aimed to inject certainty into natural philosophy by deploying mathematical reasoning (titling his main work The Mathematical Principles of Natural Philosophy most probably to highlight a stark contrast to Descartes's Principles of Philosophy). To that end he paid concerted attention to method, particularly in relation to the issue of certainty, participating in contemporary debates on the subject and elaborating his own answers. Guicciardini shows how Newton carefully positioned himself against two giants in the “common” and “new” analysis, Descartes and Leibniz. Although his work was in many ways disconnected from the traditions of Greek geometry, Newton portrayed himself as antiquity's legitimate heir, thereby distancing himself from the moderns. Guicciardini reconstructs Newton's own method by extracting it from his concrete practice and not solely by examining his broader statements about such matters. He examines the full range of Newton's works, from his early treatises on series and fluxions to the late writings, which were produced in direct opposition to Leibniz. The complex interactions between Newton's understanding of method and his mathematical work then reveal themselves through Guicciardini's careful analysis of selected examples. Isaac Newton on Mathematical Certainty and Method uncovers what mathematics was for Newton, and what being a mathematician meant to him.
Publisher: MIT Press
ISBN: 0262291657
Category : Mathematics
Languages : en
Pages : 449
Book Description
An analysis of Newton's mathematical work, from early discoveries to mature reflections, and a discussion of Newton's views on the role and nature of mathematics. Historians of mathematics have devoted considerable attention to Isaac Newton's work on algebra, series, fluxions, quadratures, and geometry. In Isaac Newton on Mathematical Certainty and Method, Niccolò Guicciardini examines a critical aspect of Newton's work that has not been tightly connected to Newton's actual practice: his philosophy of mathematics. Newton aimed to inject certainty into natural philosophy by deploying mathematical reasoning (titling his main work The Mathematical Principles of Natural Philosophy most probably to highlight a stark contrast to Descartes's Principles of Philosophy). To that end he paid concerted attention to method, particularly in relation to the issue of certainty, participating in contemporary debates on the subject and elaborating his own answers. Guicciardini shows how Newton carefully positioned himself against two giants in the “common” and “new” analysis, Descartes and Leibniz. Although his work was in many ways disconnected from the traditions of Greek geometry, Newton portrayed himself as antiquity's legitimate heir, thereby distancing himself from the moderns. Guicciardini reconstructs Newton's own method by extracting it from his concrete practice and not solely by examining his broader statements about such matters. He examines the full range of Newton's works, from his early treatises on series and fluxions to the late writings, which were produced in direct opposition to Leibniz. The complex interactions between Newton's understanding of method and his mathematical work then reveal themselves through Guicciardini's careful analysis of selected examples. Isaac Newton on Mathematical Certainty and Method uncovers what mathematics was for Newton, and what being a mathematician meant to him.
Badiou's Being and Event and the Mathematics of Set Theory
Author: Burhanuddin Baki
Publisher: Bloomsbury Publishing
ISBN: 1472578716
Category : Philosophy
Languages : en
Pages : 283
Book Description
Alain Badiou's Being and Event continues to impact philosophical investigations into the question of Being. By exploring the central role set theory plays in this influential work, Burhanuddin Baki presents the first extended study of Badiou's use of mathematics in Being and Event. Adopting a clear, straightforward approach, Baki gathers together and explains the technical details of the relevant high-level mathematics in Being and Event. He examines Badiou's philosophical framework in close detail, showing exactly how it is 'conditioned' by the technical mathematics. Clarifying the relevant details of Badiou's mathematics, Baki looks at the four core topics Badiou employs from set theory: the formal axiomatic system of ZFC; cardinal and ordinal numbers; Kurt Gödel's concept of constructability; and Cohen's technique of forcing. Baki then rebuilds Badiou's philosophical meditations in relation to their conditioning by the mathematics, paying particular attention to Cohen's forcing, which informs Badiou's analysis of the event. Providing valuable insights into Badiou's philosophy of mathematics, Badiou's Being and Event and the Mathematics of Set Theory offers an excellent commentary and a new reading of Badiou's most complex and important work.
Publisher: Bloomsbury Publishing
ISBN: 1472578716
Category : Philosophy
Languages : en
Pages : 283
Book Description
Alain Badiou's Being and Event continues to impact philosophical investigations into the question of Being. By exploring the central role set theory plays in this influential work, Burhanuddin Baki presents the first extended study of Badiou's use of mathematics in Being and Event. Adopting a clear, straightforward approach, Baki gathers together and explains the technical details of the relevant high-level mathematics in Being and Event. He examines Badiou's philosophical framework in close detail, showing exactly how it is 'conditioned' by the technical mathematics. Clarifying the relevant details of Badiou's mathematics, Baki looks at the four core topics Badiou employs from set theory: the formal axiomatic system of ZFC; cardinal and ordinal numbers; Kurt Gödel's concept of constructability; and Cohen's technique of forcing. Baki then rebuilds Badiou's philosophical meditations in relation to their conditioning by the mathematics, paying particular attention to Cohen's forcing, which informs Badiou's analysis of the event. Providing valuable insights into Badiou's philosophy of mathematics, Badiou's Being and Event and the Mathematics of Set Theory offers an excellent commentary and a new reading of Badiou's most complex and important work.