Author: Pierre Papon
Publisher: Springer Science & Business Media
ISBN: 3662049899
Category : Science
Languages : en
Pages : 410
Book Description
The Physics of Phase Transitions occupies an important place at the crossroads of several fields central to materials sciences. This second edition incorporates new developments in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. New information and application examples are included. This work deals with all classes of phase transitions in fluids and solids, containing chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, and more. End-of-chapter problems and complete answers are included.
The Physics of Phase Transitions
Author: Pierre Papon
Publisher: Springer Science & Business Media
ISBN: 3662049899
Category : Science
Languages : en
Pages : 410
Book Description
The Physics of Phase Transitions occupies an important place at the crossroads of several fields central to materials sciences. This second edition incorporates new developments in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. New information and application examples are included. This work deals with all classes of phase transitions in fluids and solids, containing chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, and more. End-of-chapter problems and complete answers are included.
Publisher: Springer Science & Business Media
ISBN: 3662049899
Category : Science
Languages : en
Pages : 410
Book Description
The Physics of Phase Transitions occupies an important place at the crossroads of several fields central to materials sciences. This second edition incorporates new developments in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. New information and application examples are included. This work deals with all classes of phase transitions in fluids and solids, containing chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, and more. End-of-chapter problems and complete answers are included.
Phase Transitions in Solids Under High Pressure
Author: Vladimir Davydovich Blank
Publisher: CRC Press
ISBN: 1466594241
Category : Science
Languages : en
Pages : 455
Book Description
The use of high-pressure techniques has become popular for studying the nature of substances and phenomena occurring in them, especially as a means of obtaining new materials (synthesis under high pressure) and processing known materials (hydroextrusion). A product of many years of research by the authors and their colleagues, Phase Transitions in Solids under High Pressure discusses the relationships of phase transformations in solids under high pressure, the mechanism of these transformations, crystal geometry, the effect of deformation, the conditions of formation, and preservation of the high-pressure phases under normal pressure. The book begins with an introduction that describes the relationship of the thermodynamics of phase transformations and the kinetics of the transformations. This is followed by a chapter explaining the equipment and mostly original procedures for investigating phase transformation in solids under high hydrostatic and quasi-hydrostatic pressures. The book covers phase transformations under high pressure in a wide temperature range in the elements carbon, silicon, germanium, titanium, zirconium, iron, gallium, and cerium as well as in titanium- and iron-based alloys and AIBVII, AIIBVI, and AIIIBV compounds. In addition, the book examines the kinetics of phase transformations in iron-based alloys in isobaric–isothermal conditions. The authors present results for phase transformations in deformation under high pressure, describe several non-trivial effects associated with phase transformations under high pressure, and analyze the kinetics and hysteresis of high-temperature and low-temperature phase transformations. They conclude by describing the role of investigations under high pressure for determining general relationships governing phase transformations in solids.
Publisher: CRC Press
ISBN: 1466594241
Category : Science
Languages : en
Pages : 455
Book Description
The use of high-pressure techniques has become popular for studying the nature of substances and phenomena occurring in them, especially as a means of obtaining new materials (synthesis under high pressure) and processing known materials (hydroextrusion). A product of many years of research by the authors and their colleagues, Phase Transitions in Solids under High Pressure discusses the relationships of phase transformations in solids under high pressure, the mechanism of these transformations, crystal geometry, the effect of deformation, the conditions of formation, and preservation of the high-pressure phases under normal pressure. The book begins with an introduction that describes the relationship of the thermodynamics of phase transformations and the kinetics of the transformations. This is followed by a chapter explaining the equipment and mostly original procedures for investigating phase transformation in solids under high hydrostatic and quasi-hydrostatic pressures. The book covers phase transformations under high pressure in a wide temperature range in the elements carbon, silicon, germanium, titanium, zirconium, iron, gallium, and cerium as well as in titanium- and iron-based alloys and AIBVII, AIIBVI, and AIIIBV compounds. In addition, the book examines the kinetics of phase transformations in iron-based alloys in isobaric–isothermal conditions. The authors present results for phase transformations in deformation under high pressure, describe several non-trivial effects associated with phase transformations under high pressure, and analyze the kinetics and hysteresis of high-temperature and low-temperature phase transformations. They conclude by describing the role of investigations under high pressure for determining general relationships governing phase transformations in solids.
Phase Transitions in Materials
Author: Brent Fultz
Publisher: Cambridge University Press
ISBN: 1107067243
Category : Science
Languages : en
Pages : 589
Book Description
A clear, concise and rigorous textbook covering phase transitions in the context of advances in electronic structure and statistical mechanics.
Publisher: Cambridge University Press
ISBN: 1107067243
Category : Science
Languages : en
Pages : 589
Book Description
A clear, concise and rigorous textbook covering phase transitions in the context of advances in electronic structure and statistical mechanics.
Phase Transitions in Solids
Author: Chintamani Nagesa Ramachandra Rao
Publisher: McGraw-Hill Companies
ISBN:
Category : Science
Languages : en
Pages : 346
Book Description
Publisher: McGraw-Hill Companies
ISBN:
Category : Science
Languages : en
Pages : 346
Book Description
Phase Transitions in Polymers: The Role of Metastable States
Author: Stephen Z.D. Cheng
Publisher: Elsevier
ISBN: 0080558208
Category : Science
Languages : en
Pages : 325
Book Description
A classical metastable state possesses a local free energy minimum at infinite sizes, but not a global one. This concept is phase size independent. We have studied a number of experimental results and proposed a new concept that there exists a wide range of metastable states in polymers on different length scales where their metastability is critically determined by the phase size and dimensionality. Metastable states are also observed in phase transformations that are kinetically impeded on the pathway to thermodynamic equilibrium. This was illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification and gel formation, as well as combinations of these transformation processes. The phase behaviours in polymers are thus dominated by interlinks of metastable states on different length scales. This concept successfully explains many experimental observations and provides a new way to connect different aspects of polymer physics.* Written by a leading scholar and industry expert* Presents new and cutting edge material encouraging innovation and future research* Connects hot topics and leading research in one concise volume
Publisher: Elsevier
ISBN: 0080558208
Category : Science
Languages : en
Pages : 325
Book Description
A classical metastable state possesses a local free energy minimum at infinite sizes, but not a global one. This concept is phase size independent. We have studied a number of experimental results and proposed a new concept that there exists a wide range of metastable states in polymers on different length scales where their metastability is critically determined by the phase size and dimensionality. Metastable states are also observed in phase transformations that are kinetically impeded on the pathway to thermodynamic equilibrium. This was illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification and gel formation, as well as combinations of these transformation processes. The phase behaviours in polymers are thus dominated by interlinks of metastable states on different length scales. This concept successfully explains many experimental observations and provides a new way to connect different aspects of polymer physics.* Written by a leading scholar and industry expert* Presents new and cutting edge material encouraging innovation and future research* Connects hot topics and leading research in one concise volume
Fundamentals of Solid-State Phase Transitions, Ferromagnetism and Ferroelectricity
Author: Yuri Mnyukh
Publisher: Directscientific Press
ISBN: 9780615339726
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The author's experimental discoveries in the field of solid-state phase transitions have brought about a thorough explanation of this phenomenon, including the puzzling nature of "lamda-anomalies." These phase transitions are found to be always a nucleation and crystal growth in a solid medium, while "second (or higher) order" phase transitions are a misconception: they do not exist. Ramifications of this new understanding are substatial. In this book the reader will find the first unified account for fundamentals of the three great areas of solid-state physics? Phase transitions, ferromagnetism and ferroelectricity, free of the inconsistencies of the conventional theories.
Publisher: Directscientific Press
ISBN: 9780615339726
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The author's experimental discoveries in the field of solid-state phase transitions have brought about a thorough explanation of this phenomenon, including the puzzling nature of "lamda-anomalies." These phase transitions are found to be always a nucleation and crystal growth in a solid medium, while "second (or higher) order" phase transitions are a misconception: they do not exist. Ramifications of this new understanding are substatial. In this book the reader will find the first unified account for fundamentals of the three great areas of solid-state physics? Phase transitions, ferromagnetism and ferroelectricity, free of the inconsistencies of the conventional theories.
Phase Transitions
Author: Ricard V. Solé
Publisher: Princeton University Press
ISBN: 0691150753
Category : Mathematics
Languages : en
Pages : 238
Book Description
Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of life, viral replication, epidemics, language evolution, and the emergence and breakdown of societies. Written at an undergraduate mathematical level, this book provides the essential theoretical tools and foundations required to develop basic models to explain collective phase transitions for a wide variety of ecosystems.
Publisher: Princeton University Press
ISBN: 0691150753
Category : Mathematics
Languages : en
Pages : 238
Book Description
Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of life, viral replication, epidemics, language evolution, and the emergence and breakdown of societies. Written at an undergraduate mathematical level, this book provides the essential theoretical tools and foundations required to develop basic models to explain collective phase transitions for a wide variety of ecosystems.
The Physics of Structural Phase Transitions
Author: Minoru Fujimoto
Publisher: Springer Science & Business Media
ISBN: 1475727259
Category : Science
Languages : en
Pages : 256
Book Description
Intended for readers with some prior knowledge of condensed-matter physics, this text emphasises the basic physics behind spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the author discusses the nature of order variables and their collective motion in a crystal lattice. He also goes on to describe experimental methods for modulated crystal structures and gives examples of structural changes in representative systems. Both a graduate text and reference work.
Publisher: Springer Science & Business Media
ISBN: 1475727259
Category : Science
Languages : en
Pages : 256
Book Description
Intended for readers with some prior knowledge of condensed-matter physics, this text emphasises the basic physics behind spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the author discusses the nature of order variables and their collective motion in a crystal lattice. He also goes on to describe experimental methods for modulated crystal structures and gives examples of structural changes in representative systems. Both a graduate text and reference work.
Phase Transition Dynamics
Author: Akira Onuki
Publisher: Cambridge University Press
ISBN: 1139433164
Category : Science
Languages : en
Pages : 726
Book Description
Phase Transition Dynamics, first published in 2002, provides a fully comprehensive treatment of the study of phase transitions. Building on the statistical mechanics of phase transitions, covered in many introductory textbooks, it will be essential reading for researchers and advanced graduate students in physics, chemistry, metallurgy and polymer science.
Publisher: Cambridge University Press
ISBN: 1139433164
Category : Science
Languages : en
Pages : 726
Book Description
Phase Transition Dynamics, first published in 2002, provides a fully comprehensive treatment of the study of phase transitions. Building on the statistical mechanics of phase transitions, covered in many introductory textbooks, it will be essential reading for researchers and advanced graduate students in physics, chemistry, metallurgy and polymer science.
Evolution of Phase Transitions
Author: Rohan Abeyaratne
Publisher: Cambridge University Press
ISBN: 9781139449243
Category : Science
Languages : en
Pages : 272
Book Description
This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This text will be of interest to those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable of undergoing stress- or temperature-induced transitions between two solid phases. The focus is on the evolution of phase transitions which may be either dynamic or quasi-static, controlled by a kinetic relation which in the framework of classical thermomechanics represents information that is supplementary to the usual balance principles and constitutive laws of conventional theory.
Publisher: Cambridge University Press
ISBN: 9781139449243
Category : Science
Languages : en
Pages : 272
Book Description
This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This text will be of interest to those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable of undergoing stress- or temperature-induced transitions between two solid phases. The focus is on the evolution of phase transitions which may be either dynamic or quasi-static, controlled by a kinetic relation which in the framework of classical thermomechanics represents information that is supplementary to the usual balance principles and constitutive laws of conventional theory.