Author: Phillip I. Good
Publisher: Springer Science & Business Media
ISBN: 0387271589
Category : Mathematics
Languages : en
Pages : 331
Book Description
Previous edition sold over 1400 copies worldwide. This new edition includes many more real-world illustrations from biology, business, clinical trials, economics, geology, law, medicine, social science and engineering along with twice the number of exercises.
Permutation, Parametric, and Bootstrap Tests of Hypotheses
Author: Phillip I. Good
Publisher: Springer Science & Business Media
ISBN: 0387271589
Category : Mathematics
Languages : en
Pages : 331
Book Description
Previous edition sold over 1400 copies worldwide. This new edition includes many more real-world illustrations from biology, business, clinical trials, economics, geology, law, medicine, social science and engineering along with twice the number of exercises.
Publisher: Springer Science & Business Media
ISBN: 0387271589
Category : Mathematics
Languages : en
Pages : 331
Book Description
Previous edition sold over 1400 copies worldwide. This new edition includes many more real-world illustrations from biology, business, clinical trials, economics, geology, law, medicine, social science and engineering along with twice the number of exercises.
Permutation Tests
Author: Phillip Good
Publisher: Springer Science & Business Media
ISBN: 1475723466
Category : Mathematics
Languages : en
Pages : 238
Book Description
A step-by-step guide to the application of permutation tests in biology, medicine, science, and engineering. The intuitive and informal style makes this manual ideally suitable for students and researchers approaching these methods for the first time. In particular, it shows how to handle the problems of missing and censored data, nonresponders, after-the-fact covariates, and outliers.
Publisher: Springer Science & Business Media
ISBN: 1475723466
Category : Mathematics
Languages : en
Pages : 238
Book Description
A step-by-step guide to the application of permutation tests in biology, medicine, science, and engineering. The intuitive and informal style makes this manual ideally suitable for students and researchers approaching these methods for the first time. In particular, it shows how to handle the problems of missing and censored data, nonresponders, after-the-fact covariates, and outliers.
Principles and Practice of Clinical Trials
Author: Steven Piantadosi
Publisher: Springer Nature
ISBN: 3319526367
Category : Medical
Languages : en
Pages : 2573
Book Description
This is a comprehensive major reference work for our SpringerReference program covering clinical trials. Although the core of the Work will focus on the design, analysis, and interpretation of scientific data from clinical trials, a broad spectrum of clinical trial application areas will be covered in detail. This is an important time to develop such a Work, as drug safety and efficacy emphasizes the Clinical Trials process. Because of an immense and growing international disease burden, pharmaceutical and biotechnology companies continue to develop new drugs. Clinical trials have also become extremely globalized in the past 15 years, with over 225,000 international trials ongoing at this point in time. Principles in Practice of Clinical Trials is truly an interdisciplinary that will be divided into the following areas: 1) Clinical Trials Basic Perspectives 2) Regulation and Oversight 3) Basic Trial Designs 4) Advanced Trial Designs 5) Analysis 6) Trial Publication 7) Topics Related Specific Populations and Legal Aspects of Clinical Trials The Work is designed to be comprised of 175 chapters and approximately 2500 pages. The Work will be oriented like many of our SpringerReference Handbooks, presenting detailed and comprehensive expository chapters on broad subjects. The Editors are major figures in the field of clinical trials, and both have written textbooks on the topic. There will also be a slate of 7-8 renowned associate editors that will edit individual sections of the Reference.
Publisher: Springer Nature
ISBN: 3319526367
Category : Medical
Languages : en
Pages : 2573
Book Description
This is a comprehensive major reference work for our SpringerReference program covering clinical trials. Although the core of the Work will focus on the design, analysis, and interpretation of scientific data from clinical trials, a broad spectrum of clinical trial application areas will be covered in detail. This is an important time to develop such a Work, as drug safety and efficacy emphasizes the Clinical Trials process. Because of an immense and growing international disease burden, pharmaceutical and biotechnology companies continue to develop new drugs. Clinical trials have also become extremely globalized in the past 15 years, with over 225,000 international trials ongoing at this point in time. Principles in Practice of Clinical Trials is truly an interdisciplinary that will be divided into the following areas: 1) Clinical Trials Basic Perspectives 2) Regulation and Oversight 3) Basic Trial Designs 4) Advanced Trial Designs 5) Analysis 6) Trial Publication 7) Topics Related Specific Populations and Legal Aspects of Clinical Trials The Work is designed to be comprised of 175 chapters and approximately 2500 pages. The Work will be oriented like many of our SpringerReference Handbooks, presenting detailed and comprehensive expository chapters on broad subjects. The Editors are major figures in the field of clinical trials, and both have written textbooks on the topic. There will also be a slate of 7-8 renowned associate editors that will edit individual sections of the Reference.
Mathematical Statistics with Resampling and R
Author: Laura M. Chihara
Publisher: John Wiley & Sons
ISBN: 1119416523
Category : Mathematics
Languages : en
Pages : 557
Book Description
This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on "Google Interview Questions" that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.
Publisher: John Wiley & Sons
ISBN: 1119416523
Category : Mathematics
Languages : en
Pages : 557
Book Description
This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on "Google Interview Questions" that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.
A Chronicle of Permutation Statistical Methods
Author: Kenneth J. Berry
Publisher: Springer Science & Business Media
ISBN: 3319027441
Category : Mathematics
Languages : en
Pages : 535
Book Description
The focus of this book is on the birth and historical development of permutation statistical methods from the early 1920s to the near present. Beginning with the seminal contributions of R.A. Fisher, E.J.G. Pitman, and others in the 1920s and 1930s, permutation statistical methods were initially introduced to validate the assumptions of classical statistical methods. Permutation methods have advantages over classical methods in that they are optimal for small data sets and non-random samples, are data-dependent, and are free of distributional assumptions. Permutation probability values may be exact, or estimated via moment- or resampling-approximation procedures. Because permutation methods are inherently computationally-intensive, the evolution of computers and computing technology that made modern permutation methods possible accompanies the historical narrative. Permutation analogs of many well-known statistical tests are presented in a historical context, including multiple correlation and regression, analysis of variance, contingency table analysis, and measures of association and agreement. A non-mathematical approach makes the text accessible to readers of all levels.
Publisher: Springer Science & Business Media
ISBN: 3319027441
Category : Mathematics
Languages : en
Pages : 535
Book Description
The focus of this book is on the birth and historical development of permutation statistical methods from the early 1920s to the near present. Beginning with the seminal contributions of R.A. Fisher, E.J.G. Pitman, and others in the 1920s and 1930s, permutation statistical methods were initially introduced to validate the assumptions of classical statistical methods. Permutation methods have advantages over classical methods in that they are optimal for small data sets and non-random samples, are data-dependent, and are free of distributional assumptions. Permutation probability values may be exact, or estimated via moment- or resampling-approximation procedures. Because permutation methods are inherently computationally-intensive, the evolution of computers and computing technology that made modern permutation methods possible accompanies the historical narrative. Permutation analogs of many well-known statistical tests are presented in a historical context, including multiple correlation and regression, analysis of variance, contingency table analysis, and measures of association and agreement. A non-mathematical approach makes the text accessible to readers of all levels.
A Primer of Permutation Statistical Methods
Author: Kenneth J. Berry
Publisher: Springer
ISBN: 3030209334
Category : Mathematics
Languages : en
Pages : 488
Book Description
The primary purpose of this textbook is to introduce the reader to a wide variety of elementary permutation statistical methods. Permutation methods are optimal for small data sets and non-random samples, and are free of distributional assumptions. The book follows the conventional structure of most introductory books on statistical methods, and features chapters on central tendency and variability, one-sample tests, two-sample tests, matched-pairs tests, one-way fully-randomized analysis of variance, one-way randomized-blocks analysis of variance, simple regression and correlation, and the analysis of contingency tables. In addition, it introduces and describes a comparatively new permutation-based, chance-corrected measure of effect size. Because permutation tests and measures are distribution-free, do not assume normality, and do not rely on squared deviations among sample values, they are currently being applied in a wide variety of disciplines. This book presents permutation alternatives to existing classical statistics, and is intended as a textbook for undergraduate statistics courses or graduate courses in the natural, social, and physical sciences, while assuming only an elementary grasp of statistics.
Publisher: Springer
ISBN: 3030209334
Category : Mathematics
Languages : en
Pages : 488
Book Description
The primary purpose of this textbook is to introduce the reader to a wide variety of elementary permutation statistical methods. Permutation methods are optimal for small data sets and non-random samples, and are free of distributional assumptions. The book follows the conventional structure of most introductory books on statistical methods, and features chapters on central tendency and variability, one-sample tests, two-sample tests, matched-pairs tests, one-way fully-randomized analysis of variance, one-way randomized-blocks analysis of variance, simple regression and correlation, and the analysis of contingency tables. In addition, it introduces and describes a comparatively new permutation-based, chance-corrected measure of effect size. Because permutation tests and measures are distribution-free, do not assume normality, and do not rely on squared deviations among sample values, they are currently being applied in a wide variety of disciplines. This book presents permutation alternatives to existing classical statistics, and is intended as a textbook for undergraduate statistics courses or graduate courses in the natural, social, and physical sciences, while assuming only an elementary grasp of statistics.
Permutation, Parametric, and Bootstrap Tests of Hypotheses
Author: Phillip I. Good
Publisher: Springer
ISBN: 9780387202792
Category : Mathematics
Languages : en
Pages : 316
Book Description
Previous edition sold over 1400 copies worldwide. This new edition includes many more real-world illustrations from biology, business, clinical trials, economics, geology, law, medicine, social science and engineering along with twice the number of exercises.
Publisher: Springer
ISBN: 9780387202792
Category : Mathematics
Languages : en
Pages : 316
Book Description
Previous edition sold over 1400 copies worldwide. This new edition includes many more real-world illustrations from biology, business, clinical trials, economics, geology, law, medicine, social science and engineering along with twice the number of exercises.
Permutation Tests for Complex Data
Author: Fortunato Pesarin
Publisher: John Wiley & Sons
ISBN: 9780470689523
Category : Mathematics
Languages : en
Pages : 448
Book Description
Complex multivariate testing problems are frequently encountered in many scientific disciplines, such as engineering, medicine and the social sciences. As a result, modern statistics needs permutation testing for complex data with low sample size and many variables, especially in observational studies. The Authors give a general overview on permutation tests with a focus on recent theoretical advances within univariate and multivariate complex permutation testing problems, this book brings the reader completely up to date with today’s current thinking. Key Features: Examines the most up-to-date methodologies of univariate and multivariate permutation testing. Includes extensive software codes in MATLAB, R and SAS, featuring worked examples, and uses real case studies from both experimental and observational studies. Includes a standalone free software NPC Test Release 10 with a graphical interface which allows practitioners from every scientific field to easily implement almost all complex testing procedures included in the book. Presents and discusses solutions to the most important and frequently encountered real problems in multivariate analyses. A supplementary website containing all of the data sets examined in the book along with ready to use software codes. Together with a wide set of application cases, the Authors present a thorough theory of permutation testing both with formal description and proofs, and analysing real case studies. Practitioners and researchers, working in different scientific fields such as engineering, biostatistics, psychology or medicine will benefit from this book.
Publisher: John Wiley & Sons
ISBN: 9780470689523
Category : Mathematics
Languages : en
Pages : 448
Book Description
Complex multivariate testing problems are frequently encountered in many scientific disciplines, such as engineering, medicine and the social sciences. As a result, modern statistics needs permutation testing for complex data with low sample size and many variables, especially in observational studies. The Authors give a general overview on permutation tests with a focus on recent theoretical advances within univariate and multivariate complex permutation testing problems, this book brings the reader completely up to date with today’s current thinking. Key Features: Examines the most up-to-date methodologies of univariate and multivariate permutation testing. Includes extensive software codes in MATLAB, R and SAS, featuring worked examples, and uses real case studies from both experimental and observational studies. Includes a standalone free software NPC Test Release 10 with a graphical interface which allows practitioners from every scientific field to easily implement almost all complex testing procedures included in the book. Presents and discusses solutions to the most important and frequently encountered real problems in multivariate analyses. A supplementary website containing all of the data sets examined in the book along with ready to use software codes. Together with a wide set of application cases, the Authors present a thorough theory of permutation testing both with formal description and proofs, and analysing real case studies. Practitioners and researchers, working in different scientific fields such as engineering, biostatistics, psychology or medicine will benefit from this book.
Modern Statistics with R
Author: Måns Thulin
Publisher:
ISBN: 9781032497457
Category : Mathematics
Languages : en
Pages : 0
Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Publisher:
ISBN: 9781032497457
Category : Mathematics
Languages : en
Pages : 0
Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Multiple Testing Problems in Pharmaceutical Statistics
Author: Alex Dmitrienko
Publisher: CRC Press
ISBN: 1584889853
Category : Mathematics
Languages : en
Pages : 323
Book Description
Useful Statistical Approaches for Addressing Multiplicity IssuesIncludes practical examples from recent trials Bringing together leading statisticians, scientists, and clinicians from the pharmaceutical industry, academia, and regulatory agencies, Multiple Testing Problems in Pharmaceutical Statistics explores the rapidly growing area of multiple c
Publisher: CRC Press
ISBN: 1584889853
Category : Mathematics
Languages : en
Pages : 323
Book Description
Useful Statistical Approaches for Addressing Multiplicity IssuesIncludes practical examples from recent trials Bringing together leading statisticians, scientists, and clinicians from the pharmaceutical industry, academia, and regulatory agencies, Multiple Testing Problems in Pharmaceutical Statistics explores the rapidly growing area of multiple c