Periodic Differential Equations

Periodic Differential Equations PDF Author: F. M. Arscott
Publisher: Elsevier
ISBN: 1483164888
Category : Mathematics
Languages : en
Pages : 295

Get Book Here

Book Description
Periodic Differential Equations: An Introduction to Mathieu, Lamé, and Allied Functions covers the fundamental problems and techniques of solution of periodic differential equations. This book is composed of 10 chapters that present important equations and the special functions they generate, ranging from Mathieu's equation to the intractable ellipsoidal wave equation. This book starts with a survey of the main problems related to the formation of periodic differential equations. The subsequent chapters deal with the general theory of Mathieu's equation, Mathieu functions of integral order, and the principles of asymptotic expansions. These topics are followed by discussions of the stable and unstable solutions of Mathieu's general equation; general properties and characteristic exponent of Hill's equation; and the general nature and solutions of the spheroidal wave equation. The concluding chapters explore the polynomials, orthogonality properties, and integral relations of Lamé's equation. These chapters also describe the wave functions and solutions of the ellipsoidal wave equation. This book will prove useful to pure and applied mathematicians and functional analysis.

Periodic Differential Equations

Periodic Differential Equations PDF Author: F. M. Arscott
Publisher: Elsevier
ISBN: 1483164888
Category : Mathematics
Languages : en
Pages : 295

Get Book Here

Book Description
Periodic Differential Equations: An Introduction to Mathieu, Lamé, and Allied Functions covers the fundamental problems and techniques of solution of periodic differential equations. This book is composed of 10 chapters that present important equations and the special functions they generate, ranging from Mathieu's equation to the intractable ellipsoidal wave equation. This book starts with a survey of the main problems related to the formation of periodic differential equations. The subsequent chapters deal with the general theory of Mathieu's equation, Mathieu functions of integral order, and the principles of asymptotic expansions. These topics are followed by discussions of the stable and unstable solutions of Mathieu's general equation; general properties and characteristic exponent of Hill's equation; and the general nature and solutions of the spheroidal wave equation. The concluding chapters explore the polynomials, orthogonality properties, and integral relations of Lamé's equation. These chapters also describe the wave functions and solutions of the ellipsoidal wave equation. This book will prove useful to pure and applied mathematicians and functional analysis.

Delay And Differential Equations - Proceedings In Honor Of George Seifert On His Retirement

Delay And Differential Equations - Proceedings In Honor Of George Seifert On His Retirement PDF Author: Arlington M Fink
Publisher: World Scientific
ISBN: 9814555274
Category :
Languages : en
Pages : 186

Get Book Here

Book Description
This is a collection of lectures by leading research mathematicians on the very latest work on qualitative theory of solutions of dynamical systems, ordinary differential equations, delay-differential equations, Volterra integrodifferential equations and partial differential equations.

Impulsive Differential Equations

Impulsive Differential Equations PDF Author: Anatoli? Mikha?lovich Samo?lenko
Publisher: World Scientific
ISBN: 9789810224165
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
For researchers in nonlinear science, this work includes coverage of linear systems, stability of solutions, periodic and almost periodic impulsive systems, integral sets of impulsive systems, optimal control in impulsive systems, and more.

Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients

Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients PDF Author: Yuri A. Mitropolsky
Publisher: Springer Science & Business Media
ISBN: 940112728X
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
Many problems in celestial mechanics, physics and engineering involve the study of oscillating systems governed by nonlinear ordinary differential equations or partial differential equations. This volume represents an important contribution to the available methods of solution for such systems. The contents are divided into six chapters. Chapter 1 presents a study of periodic solutions for nonlinear systems of evolution equations including differential equations with lag, systems of neutral type, various classes of nonlinear systems of integro-differential equations, etc. A numerical-analytic method for the investigation of periodic solutions of these evolution equations is presented. In Chapters 2 and 3, problems concerning the existence of periodic and quasiperiodic solutions for systems with lag are examined. For a nonlinear system with quasiperiodic coefficients and lag, the conditions under which quasiperiodic solutions exist are established. Chapter 4 is devoted to the study of invariant toroidal manifolds for various classes of systems of differential equations with quasiperiodic coefficients. Chapter 5 examines the problem concerning the reducibility of a linear system of difference equations with quasiperiodic coefficients to a linear system of difference equations with constant coefficients. Chapter 6 contains an investigation of invariant toroidal sets for systems of difference equations with quasiperiodic coefficients. For mathematicians whose work involves the study of oscillating systems.

Metrical Almost Periodicity and Applications to Integro-Differential Equations

Metrical Almost Periodicity and Applications to Integro-Differential Equations PDF Author: Marko Kostić
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111233871
Category : Mathematics
Languages : en
Pages : 576

Get Book Here

Book Description


Encyclopaedia of Mathematics

Encyclopaedia of Mathematics PDF Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 940151237X
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
This ENCYCLOPAEDIA OF MA THEMA TICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

Encyclopaedia of Mathematics

Encyclopaedia of Mathematics PDF Author: M. Hazewinkel
Publisher: Springer
ISBN: 1489937919
Category : Mathematics
Languages : en
Pages : 932

Get Book Here

Book Description


Principles of Discontinuous Dynamical Systems

Principles of Discontinuous Dynamical Systems PDF Author: Marat Akhmet
Publisher: Springer Science & Business Media
ISBN: 1441965815
Category : Mathematics
Languages : en
Pages : 185

Get Book Here

Book Description
Discontinuous dynamical systems have played an important role in both theory and applications during the last several decades. This is still an area of active research and techniques to make the applications more effective are an ongoing topic of interest. Principles of Discontinuous Dynamical Systems is devoted to the theory of differential equations with variable moments of impulses. It introduces a new strategy of implementing an equivalence to systems whose solutions have prescribed moments of impulses and utilizing special topologies in spaces of piecewise continuous functions. The achievements obtained on the basis of this approach are described in this book. The text progresses systematically, by covering preliminaries in the first four chapters. This is followed by more complex material and special topics such as Hopf bifurcation, Devaney's chaos, and the shadowing property are discussed in the last two chapters. This book is suitable for researchers and graduate students in mathematics and also in diverse areas such as biology, computer science, and engineering who deal with real world problems.

Nonlinear Hybrid Continuous/Discrete-Time Models

Nonlinear Hybrid Continuous/Discrete-Time Models PDF Author: Marat Akhmet
Publisher: Springer Science & Business Media
ISBN: 9491216031
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
The book is mainly about hybrid systems with continuous/discrete-time dynamics. The major part of the book consists of the theory of equations with piece-wise constant argument of generalized type. The systems as well as technique of investigation were introduced by the author very recently. They both generalized known theory about differential equations with piece-wise constant argument, introduced by K. Cook and J. Wiener in the 1980s. Moreover, differential equations with fixed and variable moments of impulses are used to model real world problems. We consider models of neural networks, blood pressure distribution and a generalized model of the cardiac pacemaker. All the results of the manuscript have not been published in any book, yet. They are very recent and united with the presence of the continuous/discrete dynamics of time. It is of big interest for specialists in biology, medicine, engineering sciences, electronics. Theoretical aspects of the book meet very strong expectations of mathematicians who investigate differential equations with discontinuities of any type.

Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities

Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities PDF Author: Marat Akhmet
Publisher: Springer
ISBN: 9811031800
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types – those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.