Performance of Steel Pipe Pile-to-concrete Bent Cap Connections Subject to Seismic Or High Transverse Loading, Phase II

Performance of Steel Pipe Pile-to-concrete Bent Cap Connections Subject to Seismic Or High Transverse Loading, Phase II PDF Author: Jerry E. Stephens
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 156

Get Book Here

Book Description
The response of a concrete filled, steel pipe pile-to-concrete pile cap connection subjected to extreme lateral loads was experimentally and analytically investigated in this project. This connection is part of a bridge support system used by the Montana Department of Transportation that consists of a linear array of piles connected at the top by a concrete pile cap. Five 1/2 size models of this connection were tested to failure under monotonically increasing and/or cyclic lateral loads. The primary attribute of the connection that was varied between tests was the amount and layout of the reinforcing steel in the pile cap. The depth of embedment of the pipe pile in the cap was held constant. The first tests were done on lightly reinforced pile cap cross-sections, and failure occurred in the pile caps due to tensile cracking of the concrete and yielding of the reinforcing steel adjacent to the pile. In subsequent connections, the amount of reinforcing steel in the cap was increased, and its arrangement was modified, until a plastic hinge occurred in the pipe pile before failure of the cap occurred. The behavior of each connection was analyzed using hand calculations, strut and tie models, and solid finite element models. The hand calculations accurately predicted the nature of the failure mechanism for each connection, but only poorly predicted the magnitude of the failure load. The strut and tie models used in this investigation were created and analyzed using conventional structural analysis software. The resulting models offered significant detail relative the response throughout the pile cap, but were unable to fully represent yielding of the reinforcing steel and the attendant redistribution of stresses within the cap. Sufficiently promising results were obtained relative to predicting the load and location at which inelastic behavior will initiate, that this analysis methodology possibly should be pursued further. Finally, though finite element models were not successfully used to model the damage cycle through cyclic loads as originally hoped, they did prove useful for extracting 3D information leading up to a state of permanent damage. They also show immediate promise for modeling responses to monotonic load conditions, particularly for analysis where concrete damage is not the controlling failure mechanism.

Performance of Steel Pipe Pile-to-concrete Bent Cap Connections Subject to Seismic Or High Transverse Loading, Phase II

Performance of Steel Pipe Pile-to-concrete Bent Cap Connections Subject to Seismic Or High Transverse Loading, Phase II PDF Author: Jerry E. Stephens
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 156

Get Book Here

Book Description
The response of a concrete filled, steel pipe pile-to-concrete pile cap connection subjected to extreme lateral loads was experimentally and analytically investigated in this project. This connection is part of a bridge support system used by the Montana Department of Transportation that consists of a linear array of piles connected at the top by a concrete pile cap. Five 1/2 size models of this connection were tested to failure under monotonically increasing and/or cyclic lateral loads. The primary attribute of the connection that was varied between tests was the amount and layout of the reinforcing steel in the pile cap. The depth of embedment of the pipe pile in the cap was held constant. The first tests were done on lightly reinforced pile cap cross-sections, and failure occurred in the pile caps due to tensile cracking of the concrete and yielding of the reinforcing steel adjacent to the pile. In subsequent connections, the amount of reinforcing steel in the cap was increased, and its arrangement was modified, until a plastic hinge occurred in the pipe pile before failure of the cap occurred. The behavior of each connection was analyzed using hand calculations, strut and tie models, and solid finite element models. The hand calculations accurately predicted the nature of the failure mechanism for each connection, but only poorly predicted the magnitude of the failure load. The strut and tie models used in this investigation were created and analyzed using conventional structural analysis software. The resulting models offered significant detail relative the response throughout the pile cap, but were unable to fully represent yielding of the reinforcing steel and the attendant redistribution of stresses within the cap. Sufficiently promising results were obtained relative to predicting the load and location at which inelastic behavior will initiate, that this analysis methodology possibly should be pursued further. Finally, though finite element models were not successfully used to model the damage cycle through cyclic loads as originally hoped, they did prove useful for extracting 3D information leading up to a state of permanent damage. They also show immediate promise for modeling responses to monotonic load conditions, particularly for analysis where concrete damage is not the controlling failure mechanism.

LRFD Bridge Design

LRFD Bridge Design PDF Author: Tim Huff
Publisher: CRC Press
ISBN: 1000543374
Category : Technology & Engineering
Languages : en
Pages : 387

Get Book Here

Book Description
This book examines and explains material from the 9th edition of the AASHTO LRFD Bridge Design Specifications, including deck and parapet design, load calculations, limit states and load combinations, concrete and steel I-girder design, bearing design, and more. With increased focus on earthquake resiliency, two separate chapters– one on conventional seismic design and the other on seismic isolation applied to bridges– will fully address this vital topic. The primary focus is on steel and concrete I-girder bridges, with regard to both superstructure and substructure design. Features: Includes several worked examples for a project bridge as well as actual bridges designed by the author Examines seismic design concepts and design details for bridges Presents the latest material based on the 9th edition of the LRFD Bridge Design Specifications Covers fatigue, strength, service, and extreme event limit states Includes numerous solved problems and exercises at the end of each chapter to illustrate the concepts presented LRFD Bridge Design: Fundamentals and Applications will serve as a useful text for graduate and upper-level undergraduate civil engineering students as well as practicing structural engineers.

Guide Specifications for Seismic Isolation Design

Guide Specifications for Seismic Isolation Design PDF Author:
Publisher: AASHTO
ISBN: 1560514566
Category : Technology & Engineering
Languages : en
Pages : 63

Get Book Here

Book Description
This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.

AASHTO Guide Specifications for LRFD Seismic Bridge Design

AASHTO Guide Specifications for LRFD Seismic Bridge Design PDF Author:
Publisher: AASHTO
ISBN: 156051521X
Category : Bridges
Languages : en
Pages : 271

Get Book Here

Book Description
This work offers guidance on bridge design for extreme events induced by human beings. This document provides the designer with information on the response of concrete bridge columns subjected to blast loads as well as blast-resistant design and detailing guidelines and analytical models of blast load distribution. The content of this guideline should be considered in situations where resisting blast loads is deemed warranted by the owner or designer.

Integrated Probabilistic Performance-based Evaluation of Benchmark Reinforced Concrete Bridges

Integrated Probabilistic Performance-based Evaluation of Benchmark Reinforced Concrete Bridges PDF Author: Kevin Rory Mackie
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 180

Get Book Here

Book Description


Pile Design and Construction Practice, Fifth Edition

Pile Design and Construction Practice, Fifth Edition PDF Author: Michael Tomlinson
Publisher: CRC Press
ISBN: 0415385822
Category : Technology & Engineering
Languages : en
Pages : 14

Get Book Here

Book Description
This international handbook is essential for geotechnical engineers and engineering geologists responsible for designing and constructing piled foundations. It explains general principles and practice and details current types of pile, piling equipment and methods. It includes calculations of the resistance of piles to compressive loads, pile groups under compressive loading, piled foundations for resisting uplift and lateral loading and the structural design of piles and pile groups. Marine structures, miscellaneous problems (including machinery foundations, underpinning, mining subsidence areas, contracts and frozen ground), durability of piled foundations, ground investigations, and pile testing are also covered. It introduces the 2005 version of Eurocode7, BS 8004 and other codes, and refers to BS 6349 on maritime structures, and new forms of civil engineering contracts suitable for piling projects. It includes numerous worked examples to the codes, many based on actual problems. It also gives very comprehensive information for students.

LRFD Guide Specifications for the Design of Pedestrian Bridges

LRFD Guide Specifications for the Design of Pedestrian Bridges PDF Author: American Association of State Highway and Transportation Officials
Publisher: AASHTO
ISBN: 1560514698
Category : Bridges
Languages : en
Pages : 38

Get Book Here

Book Description


Performance-based Seismic Bridge Design

Performance-based Seismic Bridge Design PDF Author: M. Lee Marsh
Publisher: Transportation Research Board
ISBN: 0309223806
Category : Technology & Engineering
Languages : en
Pages : 138

Get Book Here

Book Description
"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.

Design of Pile Foundations

Design of Pile Foundations PDF Author: Aleksandar Sedmak Vesić
Publisher: Transportation Research Board
ISBN: 9780309025447
Category : Foundations
Languages : en
Pages : 68

Get Book Here

Book Description


Steel Construction Manual

Steel Construction Manual PDF Author: American Institute of Steel Construction
Publisher: Amer Inst of Steel Construction
ISBN: 9781564240606
Category : Reference
Languages : en
Pages : 2192

Get Book Here

Book Description
Originally published in 1926 [i.e. 1927] under title: Steel construction; title of 8th ed.: Manual of steel construction.