Algorithmic Learning Theory

Algorithmic Learning Theory PDF Author: Jyriki Kivinen
Publisher: Springer
ISBN: 3642244122
Category : Computers
Languages : en
Pages : 465

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 22nd International Conference on Algorithmic Learning Theory, ALT 2011, held in Espoo, Finland, in October 2011, co-located with the 14th International Conference on Discovery Science, DS 2011. The 28 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from numerous submissions. The papers are divided into topical sections of papers on inductive inference, regression, bandit problems, online learning, kernel and margin-based methods, intelligent agents and other learning models.

Algorithmic Learning Theory

Algorithmic Learning Theory PDF Author: Jyriki Kivinen
Publisher: Springer
ISBN: 3642244122
Category : Computers
Languages : en
Pages : 465

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 22nd International Conference on Algorithmic Learning Theory, ALT 2011, held in Espoo, Finland, in October 2011, co-located with the 14th International Conference on Discovery Science, DS 2011. The 28 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from numerous submissions. The papers are divided into topical sections of papers on inductive inference, regression, bandit problems, online learning, kernel and margin-based methods, intelligent agents and other learning models.

Advances in Large Margin Classifiers

Advances in Large Margin Classifiers PDF Author: Alexander J. Smola
Publisher: MIT Press
ISBN: 9780262194488
Category : Computers
Languages : en
Pages : 436

Get Book Here

Book Description
The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

Support Vector Machines and Perceptrons

Support Vector Machines and Perceptrons PDF Author: M.N. Murty
Publisher: Springer
ISBN: 3319410636
Category : Computers
Languages : en
Pages : 103

Get Book Here

Book Description
This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned optimization problem is a convex optimization guaranteeing a globally optimal solution. The weight vector associated with SVM is obtained by a linear combination of some of the boundary and noisy vectors. Further, when the data are not linearly separable, tuning the coefficient of the regularization term becomes crucial. Even though SVMs have popularized the kernel trick, in most of the practical applications that are high-dimensional, linear SVMs are popularly used. The text examines applications to social and information networks. The work also discusses another popular linear classifier, the perceptron, and compares its performance with that of the SVM in different application areas.>

Machine Learning: ECML 2006

Machine Learning: ECML 2006 PDF Author: Johannes Fürnkranz
Publisher: Springer
ISBN: 354046056X
Category : Computers
Languages : en
Pages : 873

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 17th European Conference on Machine Learning, ECML 2006, held, jointly with PKDD 2006. The book presents 46 revised full papers and 36 revised short papers together with abstracts of 5 invited talks, carefully reviewed and selected from 564 papers submitted. The papers present a wealth of new results in the area and address all current issues in machine learning.

Machine Learning: ECML 2005

Machine Learning: ECML 2005 PDF Author: João Gama
Publisher: Springer
ISBN: 3540316922
Category : Computers
Languages : en
Pages : 784

Get Book Here

Book Description
The European Conference on Machine Learning (ECML) and the European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD) were jointly organized this year for the ?fth time in a row, after some years of mutual independence before. After Freiburg (2001), Helsinki (2002), Cavtat (2003) and Pisa (2004), Porto received the 16th edition of ECML and the 9th PKDD in October 3–7. Having the two conferences together seems to be working well: 585 di?erent paper submissions were received for both events, which maintains the high s- mission standard of last year. Of these, 335 were submitted to ECML only, 220 to PKDD only and 30 to both. Such a high volume of scienti?c work required a tremendous e?ort from Area Chairs, Program Committee members and some additional reviewers. On average, PC members had 10 papers to evaluate, and Area Chairs had 25 papers to decide upon. We managed to have 3 highly qua- ?edindependentreviewsperpaper(withveryfewexceptions)andoneadditional overall input from one of the Area Chairs. After the authors’ responses and the online discussions for many of the papers, we arrived at the ?nal selection of 40 regular papers for ECML and 35 for PKDD. Besides these, 32 others were accepted as short papers for ECML and 35 for PKDD. This represents a joint acceptance rate of around 13% for regular papers and 25% overall. We thank all involved for all the e?ort with reviewing and selection of papers. Besidesthecoretechnicalprogram,ECMLandPKDDhad6invitedspeakers, 10 workshops, 8 tutorials and a Knowledge Discovery Challenge.

Grokking Machine Learning

Grokking Machine Learning PDF Author: Luis Serrano
Publisher: Simon and Schuster
ISBN: 1617295914
Category : Computers
Languages : en
Pages : 510

Get Book Here

Book Description
Grokking Machine Learning presents machine learning algorithms and techniques in a way that anyone can understand. This book skips the confused academic jargon and offers clear explanations that require only basic algebra. As you go, you'll build interesting projects with Python, including models for spam detection and image recognition. You'll also pick up practical skills for cleaning and preparing data.

Advances in Computer Science, Engineering & Applications

Advances in Computer Science, Engineering & Applications PDF Author: David C. Wyld
Publisher: Springer Science & Business Media
ISBN: 3642301576
Category : Technology & Engineering
Languages : en
Pages : 1023

Get Book Here

Book Description
The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.

Machine Learning

Machine Learning PDF Author: Jude Shavlik
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 596

Get Book Here

Book Description


Advances in Neural Information Processing Systems 13

Advances in Neural Information Processing Systems 13 PDF Author: Todd K. Leen
Publisher: MIT Press
ISBN: 9780262122412
Category : Computers
Languages : en
Pages : 1136

Get Book Here

Book Description
The proceedings of the 2000 Neural Information Processing Systems (NIPS) Conference.The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2000 conference.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases PDF Author: Walter Daelemans
Publisher: Springer Science & Business Media
ISBN: 354087478X
Category : Computers
Languages : en
Pages : 714

Get Book Here

Book Description
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.