Penalising Brownian Paths

Penalising Brownian Paths PDF Author: Bernard Roynette
Publisher: Springer
ISBN: 3540896996
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
Penalising a process is to modify its distribution with a limiting procedure, thus defining a new process whose properties differ somewhat from those of the original one. We are presenting a number of examples of such penalisations in the Brownian and Bessel processes framework. The Martingale theory plays a crucial role. A general principle for penalisation emerges from these examples. In particular, it is shown in the Brownian framework that a positive sigma-finite measure takes a large class of penalisations into account.

Penalising Brownian Paths

Penalising Brownian Paths PDF Author: Bernard Roynette
Publisher: Springer
ISBN: 3540896996
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
Penalising a process is to modify its distribution with a limiting procedure, thus defining a new process whose properties differ somewhat from those of the original one. We are presenting a number of examples of such penalisations in the Brownian and Bessel processes framework. The Martingale theory plays a crucial role. A general principle for penalisation emerges from these examples. In particular, it is shown in the Brownian framework that a positive sigma-finite measure takes a large class of penalisations into account.

Séminaire de Probabilités L

Séminaire de Probabilités L PDF Author: Catherine Donati-Martin
Publisher: Springer Nature
ISBN: 3030285359
Category : Mathematics
Languages : en
Pages : 562

Get Book Here

Book Description
This milestone 50th volume of the "Séminaire de Probabilités" pays tribute with a series of memorial texts to one of its former editors, Jacques Azéma, who passed away in January. The founders of the "Séminaire de Strasbourg", which included Jacques Azéma, probably had no idea of the possible longevity and success of the process they initiated in 1967. Continuing in this long tradition, this volume contains contributions on state-of-art research on Brownian filtrations, stochastic differential equations and their applications, regularity structures, quantum diffusion, interlacing diffusions, mod-Ø convergence, Markov soup, stochastic billiards and other current streams of research.

Option Prices as Probabilities

Option Prices as Probabilities PDF Author: Christophe Profeta
Publisher: Springer Science & Business Media
ISBN: 3642103952
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?

Mathematical Statistics and Limit Theorems

Mathematical Statistics and Limit Theorems PDF Author: Marc Hallin
Publisher: Springer
ISBN: 3319124420
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
This Festschrift in honour of Paul Deheuvels’ 65th birthday compiles recent research results in the area between mathematical statistics and probability theory with a special emphasis on limit theorems. The book brings together contributions from invited international experts to provide an up-to-date survey of the field. Written in textbook style, this collection of original material addresses researchers, PhD and advanced Master students with a solid grasp of mathematical statistics and probability theory.

In Memoriam Marc Yor - Séminaire de Probabilités XLVII

In Memoriam Marc Yor - Séminaire de Probabilités XLVII PDF Author: Catherine Donati-Martin
Publisher: Springer
ISBN: 3319185853
Category : Mathematics
Languages : en
Pages : 657

Get Book Here

Book Description
This volume is dedicated to the memory of Marc Yor, who passed away in 2014. The invited contributions by his collaborators and former students bear testament to the value and diversity of his work and of his research focus, which covered broad areas of probability theory. The volume also provides personal recollections about him, and an article on his essential role concerning the Doeblin documents. With contributions by P. Salminen, J-Y. Yen & M. Yor; J. Warren; T. Funaki; J. Pitman& W. Tang; J-F. Le Gall; L. Alili, P. Graczyk & T. Zak; K. Yano & Y. Yano; D. Bakry & O. Zribi; A. Aksamit, T. Choulli & M. Jeanblanc; J. Pitman; J. Obloj, P. Spoida & N. Touzi; P. Biane; J. Najnudel; P. Fitzsimmons, Y. Le Jan & J. Rosen; L.C.G. Rogers & M. Duembgen; E. Azmoodeh, G. Peccati & G. Poly, timP-L Méliot, A. Nikeghbali; P. Baldi; N. Demni, A. Rouault & M. Zani; N. O'Connell; N. Ikeda & H. Matsumoto; A. Comtet & Y. Tourigny; P. Bougerol; L. Chaumont; L. Devroye & G. Letac; D. Stroock and M. Emery.

The Use of Ultraproducts in Commutative Algebra

The Use of Ultraproducts in Commutative Algebra PDF Author: Hans Schoutens
Publisher: Springer Science & Business Media
ISBN: 3642133673
Category : Mathematics
Languages : en
Pages : 215

Get Book Here

Book Description
Exploring ultraproducts of Noetherian local rings from an algebraic perspective, this volume illustrates the many ways they can be used in commutative algebra. The text includes an introduction to tight closure in characteristic zero, a survey of flatness criteria, and more.

Generalized Bessel Functions of the First Kind

Generalized Bessel Functions of the First Kind PDF Author: Árpád Baricz
Publisher: Springer Science & Business Media
ISBN: 3642122299
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
This volume studies the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. It presents interesting geometric properties and functional inequalities for these generalized functions.

Regularity and Approximability of Electronic Wave Functions

Regularity and Approximability of Electronic Wave Functions PDF Author: Harry Yserentant
Publisher: Springer
ISBN: 3642122485
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
The electronic Schrodi ̈ nger equation describes the motion of N electrons under Coulomb interaction forces in a eld of clamped nuclei. Solutions of this equation depend on 3N variables, three spatial dimensions for each electron. Approxim- ing the solutions is thus inordinately challenging, and it is conventionally believed that a reduction to simpli ed models, such as those of the Hartree-Fock method or density functional theory, is the only tenable approach. This book seeks to c- vince the reader that this conventional wisdom need not be ironclad: the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of one or two electrons. The present notes arose from lectures that I gave in Berlin during the academic year 2008/09 to introduce beginning graduate students of mathematics into this subject. They are kept on an intermediate level that should be accessible to an audience of this kind as well as to physicists and theoretical chemists with a c- responding mathematical training.

Holomorphic Dynamical Systems

Holomorphic Dynamical Systems PDF Author: Nessim Sibony
Publisher: Springer Science & Business Media
ISBN: 3642131700
Category : Mathematics
Languages : en
Pages : 357

Get Book Here

Book Description
The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.

Geometric Theory of Discrete Nonautonomous Dynamical Systems

Geometric Theory of Discrete Nonautonomous Dynamical Systems PDF Author: Christian Pötzsche
Publisher: Springer
ISBN: 3642142583
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes). These dynamical systems are generated by implicit difference equations, which explicitly depend on time. Compactness and dissipativity conditions are provided for such problems in order to have attractors using the natural concept of pullback convergence. Concerning a necessary linear theory, our hyperbolicity concept is based on exponential dichotomies and splittings. This concept is in turn used to construct nonautonomous invariant manifolds, so-called fiber bundles, and deduce linearization theorems. The results are illustrated using temporal and full discretizations of evolutionary differential equations.