Author: Patrick S. P. Wang
Publisher: Springer Science & Business Media
ISBN: 3642224075
Category : Computers
Languages : en
Pages : 883
Book Description
"Pattern Recognition, Machine Intelligence and Biometrics" covers the most recent developments in Pattern Recognition and its applications, using artificial intelligence technologies within an increasingly critical field. It covers topics such as: image analysis and fingerprint recognition; facial expressions and emotions; handwriting and signatures; iris recognition; hand-palm gestures; and multimodal based research. The applications span many fields, from engineering, scientific studies and experiments, to biomedical and diagnostic applications, to personal identification and homeland security. In addition, computer modeling and simulations of human behaviors are addressed in this collection of 31 chapters by top-ranked professionals from all over the world in the field of PR/AI/Biometrics. The book is intended for researchers and graduate students in Computer and Information Science, and in Communication and Control Engineering. Dr. Patrick S. P. Wang is a Professor Emeritus at the College of Computer and Information Science, Northeastern University, USA, Zijiang Chair of ECNU, Shanghai, and NSC Visiting Chair Professor of NTUST, Taipei.
Pattern Recognition, Machine Intelligence and Biometrics
Author: Patrick S. P. Wang
Publisher: Springer Science & Business Media
ISBN: 3642224075
Category : Computers
Languages : en
Pages : 883
Book Description
"Pattern Recognition, Machine Intelligence and Biometrics" covers the most recent developments in Pattern Recognition and its applications, using artificial intelligence technologies within an increasingly critical field. It covers topics such as: image analysis and fingerprint recognition; facial expressions and emotions; handwriting and signatures; iris recognition; hand-palm gestures; and multimodal based research. The applications span many fields, from engineering, scientific studies and experiments, to biomedical and diagnostic applications, to personal identification and homeland security. In addition, computer modeling and simulations of human behaviors are addressed in this collection of 31 chapters by top-ranked professionals from all over the world in the field of PR/AI/Biometrics. The book is intended for researchers and graduate students in Computer and Information Science, and in Communication and Control Engineering. Dr. Patrick S. P. Wang is a Professor Emeritus at the College of Computer and Information Science, Northeastern University, USA, Zijiang Chair of ECNU, Shanghai, and NSC Visiting Chair Professor of NTUST, Taipei.
Publisher: Springer Science & Business Media
ISBN: 3642224075
Category : Computers
Languages : en
Pages : 883
Book Description
"Pattern Recognition, Machine Intelligence and Biometrics" covers the most recent developments in Pattern Recognition and its applications, using artificial intelligence technologies within an increasingly critical field. It covers topics such as: image analysis and fingerprint recognition; facial expressions and emotions; handwriting and signatures; iris recognition; hand-palm gestures; and multimodal based research. The applications span many fields, from engineering, scientific studies and experiments, to biomedical and diagnostic applications, to personal identification and homeland security. In addition, computer modeling and simulations of human behaviors are addressed in this collection of 31 chapters by top-ranked professionals from all over the world in the field of PR/AI/Biometrics. The book is intended for researchers and graduate students in Computer and Information Science, and in Communication and Control Engineering. Dr. Patrick S. P. Wang is a Professor Emeritus at the College of Computer and Information Science, Northeastern University, USA, Zijiang Chair of ECNU, Shanghai, and NSC Visiting Chair Professor of NTUST, Taipei.
Image Pattern Recognition
Author: Svetlana N. Yanushkevich
Publisher: World Scientific
ISBN: 9812770674
Category : Computers
Languages : en
Pages : 453
Book Description
The field of biometrics utilizes computer models of the physical and behavioral characteristics of human beings with a view to reliable personal identification. The human characteristics of interest include visual images, speech, and indeed anything which might help to uniquely identify the individual. The other side of the biometrics coin is biometric synthesis OCo rendering biometric phenomena from their corresponding computer models. For example, we could generate a synthetic face from its corresponding computer model. Such a model could include muscular dynamics to model the full gamut of human emotions conveyed by facial expressions. This book is a collection of carefully selected papers presenting the fundamental theory and practice of various aspects of biometric data processing in the context of pattern recognition. The traditional task of biometric technologies OCo human identification by analysis of biometric. data OCo is extended to include the new discipline of biometric synthesis."
Publisher: World Scientific
ISBN: 9812770674
Category : Computers
Languages : en
Pages : 453
Book Description
The field of biometrics utilizes computer models of the physical and behavioral characteristics of human beings with a view to reliable personal identification. The human characteristics of interest include visual images, speech, and indeed anything which might help to uniquely identify the individual. The other side of the biometrics coin is biometric synthesis OCo rendering biometric phenomena from their corresponding computer models. For example, we could generate a synthetic face from its corresponding computer model. Such a model could include muscular dynamics to model the full gamut of human emotions conveyed by facial expressions. This book is a collection of carefully selected papers presenting the fundamental theory and practice of various aspects of biometric data processing in the context of pattern recognition. The traditional task of biometric technologies OCo human identification by analysis of biometric. data OCo is extended to include the new discipline of biometric synthesis."
Pattern Recognition and Machine Intelligence
Author: B. Uma Shankar
Publisher: Springer
ISBN: 9783319698991
Category : Computers
Languages : en
Pages : 695
Book Description
This book constitutes the proceedings of the 7th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2017,held in Kolkata, India, in December 2017. The total of 86 full papers presented in this volume were carefully reviewed and selected from 293 submissions. They were organized in topical sections named: pattern recognition and machine learning; signal and image processing; computer vision and video processing; soft and natural computing; speech and natural language processing; bioinformatics and computational biology; data mining and big data analytics; deep learning; spatial data science and engineering; and applications of pattern recognition and machine intelligence.
Publisher: Springer
ISBN: 9783319698991
Category : Computers
Languages : en
Pages : 695
Book Description
This book constitutes the proceedings of the 7th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2017,held in Kolkata, India, in December 2017. The total of 86 full papers presented in this volume were carefully reviewed and selected from 293 submissions. They were organized in topical sections named: pattern recognition and machine learning; signal and image processing; computer vision and video processing; soft and natural computing; speech and natural language processing; bioinformatics and computational biology; data mining and big data analytics; deep learning; spatial data science and engineering; and applications of pattern recognition and machine intelligence.
Advanced Pattern Recognition Technologies with Applications to Biometrics
Author: David Zhang
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 402
Book Description
"This book focuses on two kinds of advanced biometric recognition technologies, biometric data discrimination and multi-biometrics"--Provided by publisher.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 402
Book Description
"This book focuses on two kinds of advanced biometric recognition technologies, biometric data discrimination and multi-biometrics"--Provided by publisher.
Machine Learning for Biometrics
Author: Partha Pratim Sarangi
Publisher: Academic Press
ISBN: 0323903398
Category : Computers
Languages : en
Pages : 266
Book Description
Machine Learning for Biometrics: Concepts, Algorithms and Applications highlights the fundamental concepts of machine learning, processing and analyzing data from biometrics and provides a review of intelligent and cognitive learning tools which can be adopted in this direction. Each chapter of the volume is supported by real-life case studies, illustrative examples and video demonstrations. The book elucidates various biometric concepts, algorithms and applications with machine intelligence solutions, providing guidance on best practices for new technologies such as e-health solutions, Data science, Cloud computing, and Internet of Things, etc. In each section, different machine learning concepts and algorithms are used, such as different object detection techniques, image enhancement techniques, both global and local feature extraction techniques, and classifiers those are commonly used data science techniques. These biometrics techniques can be used as tools in Cloud computing, Mobile computing, IOT based applications, and e-health care systems for secure login, device access control, personal recognition and surveillance. - Covers different machine intelligence concepts, algorithms and applications in the field of cybersecurity, e-health monitoring, secure cloud computing and secure IOT based operations - Explores advanced approaches to improve recognition performance of biometric systems with the use of recent machine intelligence techniques - Introduces detection or segmentation techniques to detect biometric characteristics from the background in the input sample
Publisher: Academic Press
ISBN: 0323903398
Category : Computers
Languages : en
Pages : 266
Book Description
Machine Learning for Biometrics: Concepts, Algorithms and Applications highlights the fundamental concepts of machine learning, processing and analyzing data from biometrics and provides a review of intelligent and cognitive learning tools which can be adopted in this direction. Each chapter of the volume is supported by real-life case studies, illustrative examples and video demonstrations. The book elucidates various biometric concepts, algorithms and applications with machine intelligence solutions, providing guidance on best practices for new technologies such as e-health solutions, Data science, Cloud computing, and Internet of Things, etc. In each section, different machine learning concepts and algorithms are used, such as different object detection techniques, image enhancement techniques, both global and local feature extraction techniques, and classifiers those are commonly used data science techniques. These biometrics techniques can be used as tools in Cloud computing, Mobile computing, IOT based applications, and e-health care systems for secure login, device access control, personal recognition and surveillance. - Covers different machine intelligence concepts, algorithms and applications in the field of cybersecurity, e-health monitoring, secure cloud computing and secure IOT based operations - Explores advanced approaches to improve recognition performance of biometric systems with the use of recent machine intelligence techniques - Introduces detection or segmentation techniques to detect biometric characteristics from the background in the input sample
Introduction to Biometrics
Author: Anil K. Jain
Publisher: Springer Science & Business Media
ISBN: 0387773266
Category : Computers
Languages : en
Pages : 326
Book Description
Biometric recognition, or simply biometrics, is the science of establishing the identity of a person based on physical or behavioral attributes. It is a rapidly evolving field with applications ranging from securely accessing one’s computer to gaining entry into a country. While the deployment of large-scale biometric systems in both commercial and government applications has increased the public awareness of this technology, "Introduction to Biometrics" is the first textbook to introduce the fundamentals of Biometrics to undergraduate/graduate students. The three commonly used modalities in the biometrics field, namely, fingerprint, face, and iris are covered in detail in this book. Few other modalities like hand geometry, ear, and gait are also discussed briefly along with advanced topics such as multibiometric systems and security of biometric systems. Exercises for each chapter will be available on the book website to help students gain a better understanding of the topics and obtain practical experience in designing computer programs for biometric applications. These can be found at: http://www.csee.wvu.edu/~ross/BiometricsTextBook/. Designed for undergraduate and graduate students in computer science and electrical engineering, "Introduction to Biometrics" is also suitable for researchers and biometric and computer security professionals.
Publisher: Springer Science & Business Media
ISBN: 0387773266
Category : Computers
Languages : en
Pages : 326
Book Description
Biometric recognition, or simply biometrics, is the science of establishing the identity of a person based on physical or behavioral attributes. It is a rapidly evolving field with applications ranging from securely accessing one’s computer to gaining entry into a country. While the deployment of large-scale biometric systems in both commercial and government applications has increased the public awareness of this technology, "Introduction to Biometrics" is the first textbook to introduce the fundamentals of Biometrics to undergraduate/graduate students. The three commonly used modalities in the biometrics field, namely, fingerprint, face, and iris are covered in detail in this book. Few other modalities like hand geometry, ear, and gait are also discussed briefly along with advanced topics such as multibiometric systems and security of biometric systems. Exercises for each chapter will be available on the book website to help students gain a better understanding of the topics and obtain practical experience in designing computer programs for biometric applications. These can be found at: http://www.csee.wvu.edu/~ross/BiometricsTextBook/. Designed for undergraduate and graduate students in computer science and electrical engineering, "Introduction to Biometrics" is also suitable for researchers and biometric and computer security professionals.
AI and Deep Learning in Biometric Security
Author: Gaurav Jaswal
Publisher: CRC Press
ISBN: 1000291669
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
This book provides an in-depth overview of artificial intelligence and deep learning approaches with case studies to solve problems associated with biometric security such as authentication, indexing, template protection, spoofing attack detection, ROI detection, gender classification etc. This text highlights a showcase of cutting-edge research on the use of convolution neural networks, autoencoders, recurrent convolutional neural networks in face, hand, iris, gait, fingerprint, vein, and medical biometric traits. It also provides a step-by-step guide to understanding deep learning concepts for biometrics authentication approaches and presents an analysis of biometric images under various environmental conditions. This book is sure to catch the attention of scholars, researchers, practitioners, and technology aspirants who are willing to research in the field of AI and biometric security.
Publisher: CRC Press
ISBN: 1000291669
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
This book provides an in-depth overview of artificial intelligence and deep learning approaches with case studies to solve problems associated with biometric security such as authentication, indexing, template protection, spoofing attack detection, ROI detection, gender classification etc. This text highlights a showcase of cutting-edge research on the use of convolution neural networks, autoencoders, recurrent convolutional neural networks in face, hand, iris, gait, fingerprint, vein, and medical biometric traits. It also provides a step-by-step guide to understanding deep learning concepts for biometrics authentication approaches and presents an analysis of biometric images under various environmental conditions. This book is sure to catch the attention of scholars, researchers, practitioners, and technology aspirants who are willing to research in the field of AI and biometric security.
Machine Learning and Biometrics
Author: Jucheng Yang
Publisher: BoD – Books on Demand
ISBN: 1789235901
Category : Computers
Languages : en
Pages : 148
Book Description
We are entering the era of big data, and machine learning can be used to analyze this deluge of data automatically. Machine learning has been used to solve many interesting and often difficult real-world problems, and the biometrics is one of the leading applications of machine learning. This book introduces some new techniques on biometrics and machine learning, and new proposals of using machine learning techniques for biometrics as well. This book consists of two parts: "Biometrics" and "Machine Learning for Biometrics." Parts I and II contain four and three chapters, respectively. The book is reviewed by editors: Prof. Jucheng Yang, Prof. Dong Sun Park, Prof. Sook Yoon, Dr. Yarui Chen, and Dr. Chuanlei Zhang.
Publisher: BoD – Books on Demand
ISBN: 1789235901
Category : Computers
Languages : en
Pages : 148
Book Description
We are entering the era of big data, and machine learning can be used to analyze this deluge of data automatically. Machine learning has been used to solve many interesting and often difficult real-world problems, and the biometrics is one of the leading applications of machine learning. This book introduces some new techniques on biometrics and machine learning, and new proposals of using machine learning techniques for biometrics as well. This book consists of two parts: "Biometrics" and "Machine Learning for Biometrics." Parts I and II contain four and three chapters, respectively. The book is reviewed by editors: Prof. Jucheng Yang, Prof. Dong Sun Park, Prof. Sook Yoon, Dr. Yarui Chen, and Dr. Chuanlei Zhang.
Biometric Systems
Author: James L. Wayman
Publisher: Springer Science & Business Media
ISBN: 1846280648
Category : Computers
Languages : en
Pages : 380
Book Description
Biometric Systems provides practitioners with an overview of the principles and methods needed to build reliable biometric systems. It covers three main topics: key biometric technologies, design and management issues, and the performance evaluation of biometric systems for personal verification/identification. The four most widely used technologies are focused on - speech, fingerprint, iris and face recognition. Key features include: in-depth coverage of the technical and practical obstacles which are often neglected by application developers and system integrators and which result in shortfalls between expected and actual performance; and protocols and benchmarks which will allow developers to compare performance and track system improvements.
Publisher: Springer Science & Business Media
ISBN: 1846280648
Category : Computers
Languages : en
Pages : 380
Book Description
Biometric Systems provides practitioners with an overview of the principles and methods needed to build reliable biometric systems. It covers three main topics: key biometric technologies, design and management issues, and the performance evaluation of biometric systems for personal verification/identification. The four most widely used technologies are focused on - speech, fingerprint, iris and face recognition. Key features include: in-depth coverage of the technical and practical obstacles which are often neglected by application developers and system integrators and which result in shortfalls between expected and actual performance; and protocols and benchmarks which will allow developers to compare performance and track system improvements.
Advances in Pattern Recognition - ICAPR 2001
Author: Sameer Singh
Publisher: Springer
ISBN: 3540447326
Category : Computers
Languages : en
Pages : 491
Book Description
The paper is organized as follows: In section 2, we describe the no- orientation-discontinuity interfering model based on a Gaussian stochastic model in analyzing the properties of the interfering strokes. In section 3, we describe the improved canny edge detector with an ed- orientation constraint to detect the edges and recover the weak ones of the foreground words and characters; In section 4, we illustrate, discuss and evaluate the experimental results of the proposed method, demonstrating that our algorithm significantly improves the segmentation quality; Section 5 concludes this paper. 2. The norm-orientation-discontinuity interfering stroke model Figure 2 shows three typical samples of original image segments from the original documents and their magnitude of the detected edges respectively. The magnitude of the gradient is converted into the gray level value. The darker the edge is, the larger is the gradient magnitude. It is obvious that the topmost strong edges correspond to foreground edges. It should be noted that, while usually, the foreground writing appears darker than the background image, as shown in sample image Figure 2(a), there are cases where the foreground and background have similar intensities as shown in Figure 2(b), or worst still, the background is more prominent than the foreground as in Figure 2(c). So using only the intensity value is not enough to differentiate the foreground from the background. (a) (b) (c) (d) (e) (f)
Publisher: Springer
ISBN: 3540447326
Category : Computers
Languages : en
Pages : 491
Book Description
The paper is organized as follows: In section 2, we describe the no- orientation-discontinuity interfering model based on a Gaussian stochastic model in analyzing the properties of the interfering strokes. In section 3, we describe the improved canny edge detector with an ed- orientation constraint to detect the edges and recover the weak ones of the foreground words and characters; In section 4, we illustrate, discuss and evaluate the experimental results of the proposed method, demonstrating that our algorithm significantly improves the segmentation quality; Section 5 concludes this paper. 2. The norm-orientation-discontinuity interfering stroke model Figure 2 shows three typical samples of original image segments from the original documents and their magnitude of the detected edges respectively. The magnitude of the gradient is converted into the gray level value. The darker the edge is, the larger is the gradient magnitude. It is obvious that the topmost strong edges correspond to foreground edges. It should be noted that, while usually, the foreground writing appears darker than the background image, as shown in sample image Figure 2(a), there are cases where the foreground and background have similar intensities as shown in Figure 2(b), or worst still, the background is more prominent than the foreground as in Figure 2(c). So using only the intensity value is not enough to differentiate the foreground from the background. (a) (b) (c) (d) (e) (f)