Author: K.S. Fu
Publisher: Springer Science & Business Media
ISBN: 3642664385
Category : Science
Languages : en
Pages : 278
Book Description
The many different mathematical techniques used to solve pattem recognition problems may be grouped into two general approaches: the decision-theoretic (or discriminant) approach and the syntactic (or structural) approach. In the decision-theoretic approach, aset of characteristic measurements, called features, are extracted from the pattems. Each pattem is represented by a feature vector, and the recognition of each pattem is usually made by partitioning the feature space. Applications of decision-theoretic approach indude character recognition, medical diagnosis, remote sensing, reliability and socio-economics. A relatively new approach is the syntactic approach. In the syntactic approach, ea ch pattem is expressed in terms of a composition of its components. The recognition of a pattem is usually made by analyzing the pattem structure according to a given set of rules. Earlier applications of the syntactic approach indude chromosome dassification, English character recognition and identification of bubble and spark chamber events. The purpose of this monograph is to provide a summary of the major reeent applications of syntactic pattem recognition. After a brief introduction of syntactic pattem recognition in Chapter 1, the nin e mai n chapters (Chapters 2-10) can be divided into three parts. The first three chapters concem with the analysis of waveforms using syntactic methods. Specific application examples indude peak detection and interpretation of electro cardiograms and the recognition of speech pattems. The next five chapters deal with the syntactic recognition of two-dimensional pictorial pattems.
Syntactic Pattern Recognition, Applications
Pattern Recognition Applications in Engineering
Author: Burgos, Diego Alexander Tibaduiza
Publisher: IGI Global
ISBN: 1799818411
Category : Computers
Languages : en
Pages : 357
Book Description
The implementation of data and information analysis has become a trending solution within multiple professions. New tools and approaches are continually being developed within data analysis to further solve the challenges that come with professional strategy. Pattern recognition is an innovative method that provides comparison techniques and defines new characteristics within the information acquisition process. Despite its recent trend, a considerable amount of research regarding pattern recognition and its various strategies is lacking. Pattern Recognition Applications in Engineering is an essential reference source that discusses various strategies of pattern recognition algorithms within industrial and research applications and provides examples of results in different professional areas including electronics, computation, and health monitoring. Featuring research on topics such as condition monitoring, data normalization, and bio-inspired developments, this book is ideally designed for analysts; researchers; civil, mechanical, and electronic engineers; computing scientists; chemists; academicians; and students.
Publisher: IGI Global
ISBN: 1799818411
Category : Computers
Languages : en
Pages : 357
Book Description
The implementation of data and information analysis has become a trending solution within multiple professions. New tools and approaches are continually being developed within data analysis to further solve the challenges that come with professional strategy. Pattern recognition is an innovative method that provides comparison techniques and defines new characteristics within the information acquisition process. Despite its recent trend, a considerable amount of research regarding pattern recognition and its various strategies is lacking. Pattern Recognition Applications in Engineering is an essential reference source that discusses various strategies of pattern recognition algorithms within industrial and research applications and provides examples of results in different professional areas including electronics, computation, and health monitoring. Featuring research on topics such as condition monitoring, data normalization, and bio-inspired developments, this book is ideally designed for analysts; researchers; civil, mechanical, and electronic engineers; computing scientists; chemists; academicians; and students.
Data Analysis and Pattern Recognition in Multiple Databases
Author: Animesh Adhikari
Publisher: Springer Science & Business Media
ISBN: 3319034103
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyze them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery and mining patterns of select items provide different patterns discovery techniques in multiple data sources. Some interesting item-based data analyses are also covered in this book. Interesting patterns, such as exceptional patterns, icebergs and periodic patterns have been recently reported. The book presents a thorough influence analysis between items in time-stamped databases. The recent research on mining multiple related databases is covered while some previous contributions to the area are highlighted and contrasted with the most recent developments.
Publisher: Springer Science & Business Media
ISBN: 3319034103
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyze them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery and mining patterns of select items provide different patterns discovery techniques in multiple data sources. Some interesting item-based data analyses are also covered in this book. Interesting patterns, such as exceptional patterns, icebergs and periodic patterns have been recently reported. The book presents a thorough influence analysis between items in time-stamped databases. The recent research on mining multiple related databases is covered while some previous contributions to the area are highlighted and contrasted with the most recent developments.
Pattern Recognition and Machine Learning
Author: Christopher M. Bishop
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0
Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0
Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Dissimilarity Representation For Pattern Recognition, The: Foundations And Applications
Author: Robert P W Duin
Publisher: World Scientific
ISBN: 9814479144
Category : Computers
Languages : en
Pages : 634
Book Description
This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition.Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and integrate by machine learning procedures. However, if the relations are captured by sets of dissimilarities, general data analysis procedures may be applied for analysis.With their detailed description of an unprecedented approach absent from traditional textbooks, the authors have crafted an essential book for every researcher and systems designer studying or developing pattern recognition systems.
Publisher: World Scientific
ISBN: 9814479144
Category : Computers
Languages : en
Pages : 634
Book Description
This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition.Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and integrate by machine learning procedures. However, if the relations are captured by sets of dissimilarities, general data analysis procedures may be applied for analysis.With their detailed description of an unprecedented approach absent from traditional textbooks, the authors have crafted an essential book for every researcher and systems designer studying or developing pattern recognition systems.
Pattern Recognition
Author: J.P. Marques de Sá
Publisher: Springer Science & Business Media
ISBN: 3642566510
Category : Computers
Languages : en
Pages : 331
Book Description
The book provides a comprehensive view of pattern recognition concepts and methods, illustrated with real-life applications in several areas. A CD-ROM offered with the book includes datasets and software tools, making it easier to follow in a hands-on fashion, right from the start.
Publisher: Springer Science & Business Media
ISBN: 3642566510
Category : Computers
Languages : en
Pages : 331
Book Description
The book provides a comprehensive view of pattern recognition concepts and methods, illustrated with real-life applications in several areas. A CD-ROM offered with the book includes datasets and software tools, making it easier to follow in a hands-on fashion, right from the start.
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
Author: Alvaro Pardo
Publisher: Springer
ISBN: 331925751X
Category : Computers
Languages : en
Pages : 795
Book Description
This book constitutes the refereed proceedings of the 20th Iberoamerican Congress on Pattern Recognition, CIARP 2015, held in Montevideo, Uruguay, in November 2015. The 95 papers presented were carefully reviewed and selected from 185 submissions. The papers are organized in topical sections on applications on pattern recognition; biometrics; computer vision; gesture recognition; image classification and retrieval; image coding, processing and analysis; segmentation, analysis of shape and texture; signals analysis and processing; theory of pattern recognition; video analysis, segmentation and tracking.
Publisher: Springer
ISBN: 331925751X
Category : Computers
Languages : en
Pages : 795
Book Description
This book constitutes the refereed proceedings of the 20th Iberoamerican Congress on Pattern Recognition, CIARP 2015, held in Montevideo, Uruguay, in November 2015. The 95 papers presented were carefully reviewed and selected from 185 submissions. The papers are organized in topical sections on applications on pattern recognition; biometrics; computer vision; gesture recognition; image classification and retrieval; image coding, processing and analysis; segmentation, analysis of shape and texture; signals analysis and processing; theory of pattern recognition; video analysis, segmentation and tracking.
Advantages and Pitfalls of Pattern Recognition
Author: Horst Langer
Publisher: Elsevier
ISBN: 0128118431
Category : Science
Languages : en
Pages : 352
Book Description
Advantages and Pitfalls of Pattern Recognition presents various methods of pattern recognition and classification, useful to geophysicists, geochemists, geologists, geographers, data analysts, and educators and students of geosciences. Scientific and technological progress has dramatically improved the knowledge of our planet with huge amounts of digital data available in various fields of Earth Sciences, such as geology, geophysics, and geography. This has led to a new perspective of data analysis, requiring specific techniques that take several features into consideration rather than single parameters. Pattern recognition techniques offer a suitable key for processing and extracting useful information from the data of multivariate analysis. This book explores both supervised and unsupervised pattern recognition techniques, while providing insight into their application. - Offers real-world examples of techniques for pattern recognition and handling multivariate data - Includes examples, applications, and diagrams to enhance understanding - Provides an introduction and access to relevant software packages
Publisher: Elsevier
ISBN: 0128118431
Category : Science
Languages : en
Pages : 352
Book Description
Advantages and Pitfalls of Pattern Recognition presents various methods of pattern recognition and classification, useful to geophysicists, geochemists, geologists, geographers, data analysts, and educators and students of geosciences. Scientific and technological progress has dramatically improved the knowledge of our planet with huge amounts of digital data available in various fields of Earth Sciences, such as geology, geophysics, and geography. This has led to a new perspective of data analysis, requiring specific techniques that take several features into consideration rather than single parameters. Pattern recognition techniques offer a suitable key for processing and extracting useful information from the data of multivariate analysis. This book explores both supervised and unsupervised pattern recognition techniques, while providing insight into their application. - Offers real-world examples of techniques for pattern recognition and handling multivariate data - Includes examples, applications, and diagrams to enhance understanding - Provides an introduction and access to relevant software packages
Markov Models for Pattern Recognition
Author: Gernot A. Fink
Publisher: Springer Science & Business Media
ISBN: 1447163087
Category : Computers
Languages : en
Pages : 275
Book Description
This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.
Publisher: Springer Science & Business Media
ISBN: 1447163087
Category : Computers
Languages : en
Pages : 275
Book Description
This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.
Rough-Fuzzy Pattern Recognition
Author: Pradipta Maji
Publisher: John Wiley & Sons
ISBN: 111800440X
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.
Publisher: John Wiley & Sons
ISBN: 111800440X
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.