Author: H. Frederick Nijhout
Publisher: CRC Press
ISBN: 042996191X
Category : Mathematics
Languages : en
Pages : 459
Book Description
This Lecture Notes Volume represents the first time any of the summer school lectures have been collected and published on a discrete subject rather than grouping all of a season's lectures together. This volume provides a broad survey of current thought on the problem of pattern formation. Spanning six years of summer school lectures, it includes articles which examine the origin and evolution of spatial patterns in physio-chemical and biological systems from a great diversity of theoretical and mechanistic perspectives. In addition, most of these pieces have been updated by their authors and three articles never previously published have been added.
Pattern Formation In The Physical And Biological Sciences
Pattern Formation and Dynamics in Nonequilibrium Systems
Author: Michael Cross
Publisher: Cambridge University Press
ISBN: 0521770505
Category : Mathematics
Languages : en
Pages : 547
Book Description
An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.
Publisher: Cambridge University Press
ISBN: 0521770505
Category : Mathematics
Languages : en
Pages : 547
Book Description
An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.
Models of Biological Pattern Formation
Author: Hans Meinhardt
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 252
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 252
Book Description
Patterns in Nature
Author: Philip Ball
Publisher: University of Chicago Press
ISBN: 022633242X
Category : Art
Languages : en
Pages : 289
Book Description
While the natural world is often described as organic, it is in fact structured to the very molecule, replete with patterned order that can be decoded with basic mathematical algorithms and principles. In a nautilus shell one can see logarithmic spirals, and the Golden Ratio can be seen in the seed head of the sunflower plant. These patterns and shapes have inspired artists, writers, designers, and musicians for thousands of years. "Patterns in Nature: Why the Natural World Looks the Way It Does" illuminates the amazing diversity of pattern in the natural world and takes readers on a visual tour of some of the world s most incredible natural wonders. Featuring awe-inspiring galleries of nature s most ingenious designs, "Patterns in Nature" is a synergy of art and science that will fascinate artists, nature lovers, and mathematicians alike."
Publisher: University of Chicago Press
ISBN: 022633242X
Category : Art
Languages : en
Pages : 289
Book Description
While the natural world is often described as organic, it is in fact structured to the very molecule, replete with patterned order that can be decoded with basic mathematical algorithms and principles. In a nautilus shell one can see logarithmic spirals, and the Golden Ratio can be seen in the seed head of the sunflower plant. These patterns and shapes have inspired artists, writers, designers, and musicians for thousands of years. "Patterns in Nature: Why the Natural World Looks the Way It Does" illuminates the amazing diversity of pattern in the natural world and takes readers on a visual tour of some of the world s most incredible natural wonders. Featuring awe-inspiring galleries of nature s most ingenious designs, "Patterns in Nature" is a synergy of art and science that will fascinate artists, nature lovers, and mathematicians alike."
Directions In Condensed Matter Physics: Memorial Volume In Honor Of Shang-keng Ma
Author: Geoffrey Grinstein
Publisher: World Scientific
ISBN: 9814513601
Category : Science
Languages : en
Pages : 270
Book Description
This volume collects several in-depth articles giving lucid discussions on new developments in statistical and condensed matter physics. Many, though not all, contributors had been in touch with the late S-K Ma. Written by some of the world's experts and originators of new ideas in the field, this book is a must for all researchers in theoretical physics. Most of the articles should be accessible to diligent graduate students and experienced readers will gain from the wealth of materials contained herein.
Publisher: World Scientific
ISBN: 9814513601
Category : Science
Languages : en
Pages : 270
Book Description
This volume collects several in-depth articles giving lucid discussions on new developments in statistical and condensed matter physics. Many, though not all, contributors had been in touch with the late S-K Ma. Written by some of the world's experts and originators of new ideas in the field, this book is a must for all researchers in theoretical physics. Most of the articles should be accessible to diligent graduate students and experienced readers will gain from the wealth of materials contained herein.
Self-Organization in Biological Systems
Author: Scott Camazine
Publisher: Princeton University Press
ISBN: 0691212929
Category : Science
Languages : en
Pages : 548
Book Description
The synchronized flashing of fireflies at night. The spiraling patterns of an aggregating slime mold. The anastomosing network of army-ant trails. The coordinated movements of a school of fish. Researchers are finding in such patterns--phenomena that have fascinated naturalists for centuries--a fertile new approach to understanding biological systems: the study of self-organization. This book, a primer on self-organization in biological systems for students and other enthusiasts, introduces readers to the basic concepts and tools for studying self-organization and then examines numerous examples of self-organization in the natural world. Self-organization refers to diverse pattern formation processes in the physical and biological world, from sand grains assembling into rippled dunes to cells combining to create highly structured tissues to individual insects working to create sophisticated societies. What these diverse systems hold in common is the proximate means by which they acquire order and structure. In self-organizing systems, pattern at the global level emerges solely from interactions among lower-level components. Remarkably, even very complex structures result from the iteration of surprisingly simple behaviors performed by individuals relying on only local information. This striking conclusion suggests important lines of inquiry: To what degree is environmental rather than individual complexity responsible for group complexity? To what extent have widely differing organisms adopted similar, convergent strategies of pattern formation? How, specifically, has natural selection determined the rules governing interactions within biological systems? Broad in scope, thorough yet accessible, this book is a self-contained introduction to self-organization and complexity in biology--a field of study at the forefront of life sciences research.
Publisher: Princeton University Press
ISBN: 0691212929
Category : Science
Languages : en
Pages : 548
Book Description
The synchronized flashing of fireflies at night. The spiraling patterns of an aggregating slime mold. The anastomosing network of army-ant trails. The coordinated movements of a school of fish. Researchers are finding in such patterns--phenomena that have fascinated naturalists for centuries--a fertile new approach to understanding biological systems: the study of self-organization. This book, a primer on self-organization in biological systems for students and other enthusiasts, introduces readers to the basic concepts and tools for studying self-organization and then examines numerous examples of self-organization in the natural world. Self-organization refers to diverse pattern formation processes in the physical and biological world, from sand grains assembling into rippled dunes to cells combining to create highly structured tissues to individual insects working to create sophisticated societies. What these diverse systems hold in common is the proximate means by which they acquire order and structure. In self-organizing systems, pattern at the global level emerges solely from interactions among lower-level components. Remarkably, even very complex structures result from the iteration of surprisingly simple behaviors performed by individuals relying on only local information. This striking conclusion suggests important lines of inquiry: To what degree is environmental rather than individual complexity responsible for group complexity? To what extent have widely differing organisms adopted similar, convergent strategies of pattern formation? How, specifically, has natural selection determined the rules governing interactions within biological systems? Broad in scope, thorough yet accessible, this book is a self-contained introduction to self-organization and complexity in biology--a field of study at the forefront of life sciences research.
Research at the Intersection of the Physical and Life Sciences
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309147514
Category : Science
Languages : en
Pages : 122
Book Description
Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies.
Publisher: National Academies Press
ISBN: 0309147514
Category : Science
Languages : en
Pages : 122
Book Description
Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies.
Pattern Formation in Biology, Vision and Dynamics
Author: Alessandra Carbone
Publisher: World Scientific
ISBN: 9789810237929
Category : Science
Languages : en
Pages : 452
Book Description
Half a billion years of evolution have turned the eye into an unbelievable pattern detector. Everything we perceive comes in delightful multicolored forms. Now, in the age of science, we want to comprehend what and why we see. Two dozen outstanding biologists, chemists, physicists, psychologists, computer scientists and mathematicians met at the Institut d'Hautes Etudes Scientifiques in Bures-sur-Yvette, France. They expounded their views on the physical, biological and physiological mechanisms creating the tapestry of patterns we see in molecules, plants, insects, seashells, and even the human brain. This volume comprises surveys of different aspects of pattern formation and recognition, and is aimed at the scientifically minded reader.
Publisher: World Scientific
ISBN: 9789810237929
Category : Science
Languages : en
Pages : 452
Book Description
Half a billion years of evolution have turned the eye into an unbelievable pattern detector. Everything we perceive comes in delightful multicolored forms. Now, in the age of science, we want to comprehend what and why we see. Two dozen outstanding biologists, chemists, physicists, psychologists, computer scientists and mathematicians met at the Institut d'Hautes Etudes Scientifiques in Bures-sur-Yvette, France. They expounded their views on the physical, biological and physiological mechanisms creating the tapestry of patterns we see in molecules, plants, insects, seashells, and even the human brain. This volume comprises surveys of different aspects of pattern formation and recognition, and is aimed at the scientifically minded reader.
The Self-made Tapestry
Author: Philip Ball
Publisher:
ISBN: 9780198502432
Category : Nature
Languages : en
Pages : 316
Book Description
For centuries, scientists have struggled to understand the origins of the patterns and forms found in nature. Now, in this lucid and accessibly written book, Philip Ball applies state-of-the-art scientific understanding from the fields of biology, chemistry, geology, physics, and mathematics to these ancient mysteries, revealing how nature's seemingly complex patterns originate in simple physical laws. Tracing the history of scientific thought about natural patterns, Ball shows how common presumptions--for example, that complex form must be guided by some intelligence or that form always follows function--are erroneous and continue to mislead scientists today. He investigates specific patterns in depth, revealing that these designs are self-organized and that simple, local interactions between component parts produce motifs like spots, stripes, branches, and honeycombs. In the process, he examines the mysterious phenomenon of symmetry and why it appears--and breaks--in similar ways in different systems. Finally, he attempts to answer this profound question: why are some patterns universal? Illustrations throughout the text, many in full color, beautifully illuminate Ball's ideas.
Publisher:
ISBN: 9780198502432
Category : Nature
Languages : en
Pages : 316
Book Description
For centuries, scientists have struggled to understand the origins of the patterns and forms found in nature. Now, in this lucid and accessibly written book, Philip Ball applies state-of-the-art scientific understanding from the fields of biology, chemistry, geology, physics, and mathematics to these ancient mysteries, revealing how nature's seemingly complex patterns originate in simple physical laws. Tracing the history of scientific thought about natural patterns, Ball shows how common presumptions--for example, that complex form must be guided by some intelligence or that form always follows function--are erroneous and continue to mislead scientists today. He investigates specific patterns in depth, revealing that these designs are self-organized and that simple, local interactions between component parts produce motifs like spots, stripes, branches, and honeycombs. In the process, he examines the mysterious phenomenon of symmetry and why it appears--and breaks--in similar ways in different systems. Finally, he attempts to answer this profound question: why are some patterns universal? Illustrations throughout the text, many in full color, beautifully illuminate Ball's ideas.
The Once and Future Turing
Author: S. Barry Cooper
Publisher: Cambridge University Press
ISBN: 131658917X
Category : Mathematics
Languages : en
Pages : 398
Book Description
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.
Publisher: Cambridge University Press
ISBN: 131658917X
Category : Mathematics
Languages : en
Pages : 398
Book Description
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.