Author: Michio Masujima
Publisher: Springer Science & Business Media
ISBN: 3540878513
Category : Science
Languages : en
Pages : 286
Book Description
In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. Forthe description ofthe classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal ism. The Hamiltonian formalism is derived from the Lagrangian·formalism. In the standard formalism ofquantum mechanics, we usually make use ofthe Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism ofquantum mechanics is Schrodinger's wave mechan ics. In this approach, we regard the Hamilton-Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Based on the optical analogy, we obtain the Schrodinger equation as a result ofthe inverse of the Eikonal approximation to the Hamilton-Jacobi equation, and thus we arrive at "wave mechanics". The second formalism ofquantum mechanics is Heisenberg's "matrix me chanics". In this approach, we arrive at the Heisenberg equation of motion from consideration of the consistency of the Ritz combination principle, the Bohr quantization condition and the Fourier analysis of a physical quantity. These two formalisms make up the Hamiltonian.formalism of quantum me chanics.
Path Integral Quantization and Stochastic Quantization
Author: Michio Masujima
Publisher: Springer Science & Business Media
ISBN: 3540878513
Category : Science
Languages : en
Pages : 286
Book Description
In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. Forthe description ofthe classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal ism. The Hamiltonian formalism is derived from the Lagrangian·formalism. In the standard formalism ofquantum mechanics, we usually make use ofthe Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism ofquantum mechanics is Schrodinger's wave mechan ics. In this approach, we regard the Hamilton-Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Based on the optical analogy, we obtain the Schrodinger equation as a result ofthe inverse of the Eikonal approximation to the Hamilton-Jacobi equation, and thus we arrive at "wave mechanics". The second formalism ofquantum mechanics is Heisenberg's "matrix me chanics". In this approach, we arrive at the Heisenberg equation of motion from consideration of the consistency of the Ritz combination principle, the Bohr quantization condition and the Fourier analysis of a physical quantity. These two formalisms make up the Hamiltonian.formalism of quantum me chanics.
Publisher: Springer Science & Business Media
ISBN: 3540878513
Category : Science
Languages : en
Pages : 286
Book Description
In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. Forthe description ofthe classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal ism. The Hamiltonian formalism is derived from the Lagrangian·formalism. In the standard formalism ofquantum mechanics, we usually make use ofthe Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism ofquantum mechanics is Schrodinger's wave mechan ics. In this approach, we regard the Hamilton-Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Based on the optical analogy, we obtain the Schrodinger equation as a result ofthe inverse of the Eikonal approximation to the Hamilton-Jacobi equation, and thus we arrive at "wave mechanics". The second formalism ofquantum mechanics is Heisenberg's "matrix me chanics". In this approach, we arrive at the Heisenberg equation of motion from consideration of the consistency of the Ritz combination principle, the Bohr quantization condition and the Fourier analysis of a physical quantity. These two formalisms make up the Hamiltonian.formalism of quantum me chanics.
Stochastic Quantization
Author: Mikio Namiki
Publisher: Springer Science & Business Media
ISBN: 3540472177
Category : Science
Languages : en
Pages : 227
Book Description
This is a textbook on stochastic quantization which was originally proposed by G. Parisi and Y. S. Wu in 1981 and then developed by many workers. I assume that the reader has finished a standard course in quantum field theory. The Parisi-Wu stochastic quantization method gives quantum mechanics as the thermal-equilibrium limit of a hypothetical stochastic process with respect to some fictitious time other than ordinary time. We can consider this to be a third method of quantization; remarkably different from the conventional theories, i. e, the canonical and path-integral ones. Over the past ten years, we have seen the technical merits of this method in quantizing gauge fields and in performing large numerical simulations, which have never been obtained by the other methods. I believe that the stochastic quantization method has the potential to extend the territory of quantum mechanics and of quantum field theory. However, I should remark that stochastic quantization is still under development through many mathematical improvements and physical applications, and also that the fictitious time of the theory is only a mathematical tool, for which we do not yet know its origin in the physical background. For these reasons, in this book, I attempt to describe its theoretical formulation in detail as well as practical achievements.
Publisher: Springer Science & Business Media
ISBN: 3540472177
Category : Science
Languages : en
Pages : 227
Book Description
This is a textbook on stochastic quantization which was originally proposed by G. Parisi and Y. S. Wu in 1981 and then developed by many workers. I assume that the reader has finished a standard course in quantum field theory. The Parisi-Wu stochastic quantization method gives quantum mechanics as the thermal-equilibrium limit of a hypothetical stochastic process with respect to some fictitious time other than ordinary time. We can consider this to be a third method of quantization; remarkably different from the conventional theories, i. e, the canonical and path-integral ones. Over the past ten years, we have seen the technical merits of this method in quantizing gauge fields and in performing large numerical simulations, which have never been obtained by the other methods. I believe that the stochastic quantization method has the potential to extend the territory of quantum mechanics and of quantum field theory. However, I should remark that stochastic quantization is still under development through many mathematical improvements and physical applications, and also that the fictitious time of the theory is only a mathematical tool, for which we do not yet know its origin in the physical background. For these reasons, in this book, I attempt to describe its theoretical formulation in detail as well as practical achievements.
Path Integrals in Physics
Author: M Chaichian
Publisher: CRC Press
ISBN: 1482268914
Category : Science
Languages : en
Pages : 360
Book Description
The path integral approach has proved extremely useful for the understanding of the most complex problems in quantum field theory, cosmology, and condensed matter physics. Path Integrals in Physics: Volume II, Quantum Field Theory, Statistical Physics and other Modern Applications covers the fundamentals of path integrals, both the Wiener and Feynman types, and their many applications in physics. The book deals with systems that have an infinite number of degrees of freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. Each chapter is self-contained and can be considered as an independent textbook. It provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.
Publisher: CRC Press
ISBN: 1482268914
Category : Science
Languages : en
Pages : 360
Book Description
The path integral approach has proved extremely useful for the understanding of the most complex problems in quantum field theory, cosmology, and condensed matter physics. Path Integrals in Physics: Volume II, Quantum Field Theory, Statistical Physics and other Modern Applications covers the fundamentals of path integrals, both the Wiener and Feynman types, and their many applications in physics. The book deals with systems that have an infinite number of degrees of freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. Each chapter is self-contained and can be considered as an independent textbook. It provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.
Path Integrals in Physics
Author: M Chaichian
Publisher: CRC Press
ISBN: 9780367397142
Category :
Languages : en
Pages : 336
Book Description
Path Integrals in Physics: Volume I, Stochastic Processes and Quantum Mechanics presents the fundamentals of path integrals, both the Wiener and Feynman type, and their many applications in physics. Accessible to a broad community of theoretical physicists, the book deals with systems possessing a infinite number of degrees in freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. It describes in detail various applications, including systems with Grassmann variables. Each chapter is self-contained and can be considered as an independent textbook. The book provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.
Publisher: CRC Press
ISBN: 9780367397142
Category :
Languages : en
Pages : 336
Book Description
Path Integrals in Physics: Volume I, Stochastic Processes and Quantum Mechanics presents the fundamentals of path integrals, both the Wiener and Feynman type, and their many applications in physics. Accessible to a broad community of theoretical physicists, the book deals with systems possessing a infinite number of degrees in freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. It describes in detail various applications, including systems with Grassmann variables. Each chapter is self-contained and can be considered as an independent textbook. The book provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.
Path Integrals and Hamiltonians
Author: Belal E. Baaquie
Publisher: Cambridge University Press
ISBN: 1139867334
Category : Science
Languages : en
Pages : 437
Book Description
Providing a pedagogical introduction to the essential principles of path integrals and Hamiltonians, this book describes cutting-edge quantum mathematical techniques applicable to a vast range of fields, from quantum mechanics, solid state physics, statistical mechanics, quantum field theory, and superstring theory to financial modeling, polymers, biology, chemistry, and quantum finance. Eschewing use of the Schrödinger equation, the powerful and flexible combination of Hamiltonian operators and path integrals is used to study a range of different quantum and classical random systems, succinctly demonstrating the interplay between a system's path integral, state space, and Hamiltonian. With a practical emphasis on the methodological and mathematical aspects of each derivation, this is a perfect introduction to these versatile mathematical methods, suitable for researchers and graduate students in physics and engineering.
Publisher: Cambridge University Press
ISBN: 1139867334
Category : Science
Languages : en
Pages : 437
Book Description
Providing a pedagogical introduction to the essential principles of path integrals and Hamiltonians, this book describes cutting-edge quantum mathematical techniques applicable to a vast range of fields, from quantum mechanics, solid state physics, statistical mechanics, quantum field theory, and superstring theory to financial modeling, polymers, biology, chemistry, and quantum finance. Eschewing use of the Schrödinger equation, the powerful and flexible combination of Hamiltonian operators and path integrals is used to study a range of different quantum and classical random systems, succinctly demonstrating the interplay between a system's path integral, state space, and Hamiltonian. With a practical emphasis on the methodological and mathematical aspects of each derivation, this is a perfect introduction to these versatile mathematical methods, suitable for researchers and graduate students in physics and engineering.
Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
Author: Hagen Kleinert
Publisher: World Scientific
ISBN: 9814273570
Category : Business & Economics
Languages : en
Pages : 1626
Book Description
Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.
Publisher: World Scientific
ISBN: 9814273570
Category : Business & Economics
Languages : en
Pages : 1626
Book Description
Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.
Path Integral Methods in Quantum Field Theory
Author: R. J. Rivers
Publisher: Cambridge University Press
ISBN: 9780521368704
Category : Science
Languages : en
Pages : 356
Book Description
The applications of functional integral methods introduced in this text for solving a range of problems in quantum field theory will prove useful for students and researchers in theoretical physics and quantum field theory.
Publisher: Cambridge University Press
ISBN: 9780521368704
Category : Science
Languages : en
Pages : 356
Book Description
The applications of functional integral methods introduced in this text for solving a range of problems in quantum field theory will prove useful for students and researchers in theoretical physics and quantum field theory.
Quantum Theory of Many-variable Systems and Fields
Author: B. Sakita
Publisher: World Scientific Publishing Company
ISBN: 9789971978556
Category : Mathematics
Languages : en
Pages : 234
Book Description
These lecture notes are based on special courses on Field Theory and Statistical Mechanics given for graduate students at the City College of New York. It is an ideal text for a one-semester course on Quantum Field Theory.
Publisher: World Scientific Publishing Company
ISBN: 9789971978556
Category : Mathematics
Languages : en
Pages : 234
Book Description
These lecture notes are based on special courses on Field Theory and Statistical Mechanics given for graduate students at the City College of New York. It is an ideal text for a one-semester course on Quantum Field Theory.
Path Integrals and Quantum Processes
Author: Mark S. Swanson
Publisher: Courier Corporation
ISBN: 0486493067
Category : Science
Languages : en
Pages : 463
Book Description
Graduate-level, systematic presentation of path integral approach to calculating transition elements, partition functions, and source functionals. Covers Grassmann variables, field and gauge field theory, perturbation theory, and nonperturbative results. 1992 edition.
Publisher: Courier Corporation
ISBN: 0486493067
Category : Science
Languages : en
Pages : 463
Book Description
Graduate-level, systematic presentation of path integral approach to calculating transition elements, partition functions, and source functionals. Covers Grassmann variables, field and gauge field theory, perturbation theory, and nonperturbative results. 1992 edition.
Path Integrals in Physics
Author: M Chaichian
Publisher: CRC Press
ISBN: 9780750308021
Category : Science
Languages : en
Pages : 368
Book Description
The path integral approach has proved extremely useful for the understanding of the most complex problems in quantum field theory, cosmology, and condensed matter physics. Path Integrals in Physics: Volume II, Quantum Field Theory, Statistical Physics and other Modern Applications covers the fundamentals of path integrals, both the Wiener and Feynman types, and their many applications in physics. The book deals with systems that have an infinite number of degrees of freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. Each chapter is self-contained and can be considered as an independent textbook. It provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.
Publisher: CRC Press
ISBN: 9780750308021
Category : Science
Languages : en
Pages : 368
Book Description
The path integral approach has proved extremely useful for the understanding of the most complex problems in quantum field theory, cosmology, and condensed matter physics. Path Integrals in Physics: Volume II, Quantum Field Theory, Statistical Physics and other Modern Applications covers the fundamentals of path integrals, both the Wiener and Feynman types, and their many applications in physics. The book deals with systems that have an infinite number of degrees of freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. Each chapter is self-contained and can be considered as an independent textbook. It provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.