Passively Mode-Locked Semiconductor Lasers

Passively Mode-Locked Semiconductor Lasers PDF Author: Lina Jaurigue
Publisher: Springer
ISBN: 3319588745
Category : Science
Languages : en
Pages : 206

Get Book Here

Book Description
This thesis investigates the dynamics of passively mode-locked semiconductor lasers, with a focus on the influence of optical feedback on the noise characteristics. The results presented here are important for improving the performance of passively mode-locked semiconductor lasers and, at the same time, are relevant for understanding delay-systems in general. The semi-analytic results developed are applicable to a broad range of oscillatory systems with time-delayed feedback, making the thesis of relevance to various scientific communities. Passively mode-locked lasers can produce pulse trains and have applications in the contexts of optical clocking, microscopy and optical data communication, among others. Using a system of delay differential equations to model these devices, a combination of numerical and semi-analytic methods is developed and used to characterize this system.

Passively Mode-Locked Semiconductor Lasers

Passively Mode-Locked Semiconductor Lasers PDF Author: Lina Jaurigue
Publisher: Springer
ISBN: 3319588745
Category : Science
Languages : en
Pages : 206

Get Book Here

Book Description
This thesis investigates the dynamics of passively mode-locked semiconductor lasers, with a focus on the influence of optical feedback on the noise characteristics. The results presented here are important for improving the performance of passively mode-locked semiconductor lasers and, at the same time, are relevant for understanding delay-systems in general. The semi-analytic results developed are applicable to a broad range of oscillatory systems with time-delayed feedback, making the thesis of relevance to various scientific communities. Passively mode-locked lasers can produce pulse trains and have applications in the contexts of optical clocking, microscopy and optical data communication, among others. Using a system of delay differential equations to model these devices, a combination of numerical and semi-analytic methods is developed and used to characterize this system.

Vertical External Cavity Surface Emitting Lasers

Vertical External Cavity Surface Emitting Lasers PDF Author: Michael Jetter
Publisher: John Wiley & Sons
ISBN: 3527807977
Category : Technology & Engineering
Languages : en
Pages : 594

Get Book Here

Book Description
Vertical External Cavity Surface Emitting Lasers Provides comprehensive coverage of the advancement of vertical-external-cavity surface-emitting lasers Vertical-external-cavity surface-emitting lasers (VECSELs) emit coherent light from the infrared to the visible spectral range with high power output. Recent years have seen new device developments – such as the mode-locked integrated (MIXSEL) and the membrane external-cavity surface emitting laser (MECSEL) – expand the application of VECSELs to include laser cooling, spectroscopy, telecommunications, biophotonics, and laser-based displays and projectors. In Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications, leading international research groups provide a comprehensive, fully up-to-date account of all fundamental and technological aspects of vertical external cavity surface emitting lasers. This unique book reviews the physics and technology of optically-pumped disk lasers and discusses the latest developments of VECSEL devices in different wavelength ranges. Topics include OP-VECSEL physics, continuous wave (CW) lasers, frequency doubling, carrier dynamics in SESAMs, and characterization of nonlinear lensing in VECSEL gain samples. This authoritative volume: Summarizes new concepts of DBR-free and MECSEL lasers for the first time Covers the mode-locking concept and its application Provides an overview of the emerging concept of self-mode locking Describes the development of next-generation OPS laser products Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications is an invaluable resource for laser specialists, semiconductor physicists, optical industry professionals, spectroscopists, telecommunications engineers and industrial physicists.

Nonlinear Laser Dynamics

Nonlinear Laser Dynamics PDF Author: Kathy Lüdge
Publisher: John Wiley & Sons
ISBN: 3527639837
Category : Science
Languages : en
Pages : 412

Get Book Here

Book Description
A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.

Spatio-Temporal Modeling and Device Optimization of Passively Mode-Locked Semiconductor Lasers

Spatio-Temporal Modeling and Device Optimization of Passively Mode-Locked Semiconductor Lasers PDF Author: Stefan Meinecke
Publisher: Springer Nature
ISBN: 3030962482
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
This thesis investigates passively mode-locked semiconductor lasers by numerical methods. The understanding and optimization of such devices is crucial to the advancement of technologies such as optical data communication and dual comb spectroscopy. The focus of the thesis is therefore on the development of efficient numerical models, which are able both to perform larger parameter studies and to provide quantitative predictions. Along with that, visualization and evaluation techniques for the rich spatio-temporal laser dynamics are developed; these facilitate the physical interpretation of the observed features. The investigations in this thesis revolve around two specific semiconductor devices, namely a monolithically integrated three-section tapered quantum-dot laser and a V-shaped external cavity laser. In both cases, the simulations closely tie in with experimental results, which have been obtained in collaboration with the TU Darmstadt and the ETH Zurich. Based on the successful numerical reproduction of the experimental findings, the emission dynamics of both lasers can be understood in terms of the cavity geometry and the active medium dynamics. The latter, in particular, highlights the value of the developed simulation tools, since the fast charge-carrier dynamics are generally not experimentally accessible during mode-locking operation. Lastly, the numerical models are used to perform laser design explorations and thus to derive recommendations for further optimizations.

Semiconductor Lasers

Semiconductor Lasers PDF Author: Alexei Baranov
Publisher: Elsevier
ISBN: 0857096400
Category : Technology & Engineering
Languages : en
Pages : 671

Get Book Here

Book Description
Semiconductor lasers have important applications in numerous fields, including engineering, biology, chemistry and medicine. They form the backbone of the optical telecommunications infrastructure supporting the internet, and are used in information storage devices, bar-code scanners, laser printers and many other everyday products. Semiconductor lasers: Fundamentals and applications is a comprehensive review of this vital technology.Part one introduces the fundamentals of semiconductor lasers, beginning with key principles before going on to discuss photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation. Part two then reviews applications of visible and near-infrared emitting lasers. Nonpolar and semipolar GaN-based lasers, advanced self-assembled InAs quantum dot lasers and vertical cavity surface emitting lasers are all considered, in addition to semiconductor disk and hybrid silicon lasers. Finally, applications of mid- and far-infrared emitting lasers are the focus of part three. Topics covered include GaSb-based type I quantum well diode lasers, interband cascade and terahertz quantum cascade lasers, whispering gallery mode lasers and tunable mid-infrared laser absorption spectroscopy.With its distinguished editors and international team of expert contributors, Semiconductor lasers is a valuable guide for all those involved in the design, operation and application of these important lasers, including laser and telecommunications engineers, scientists working in biology and chemistry, medical practitioners, and academics working in this field. - Provides a comprehensive review of semiconductor lasers and their applications in engineering, biology, chemistry and medicine - Discusses photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation - Reviews applications of visible and near-infrared emitting lasers and mid- and far-infrared emitting lasers

Semiconductor Laser Engineering, Reliability and Diagnostics

Semiconductor Laser Engineering, Reliability and Diagnostics PDF Author: Peter W. Epperlein
Publisher: John Wiley & Sons
ISBN: 1118481860
Category : Technology & Engineering
Languages : en
Pages : 522

Get Book Here

Book Description
This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.

Applied Nanophotonics

Applied Nanophotonics PDF Author: Sergey V. Gaponenko
Publisher: Cambridge University Press
ISBN: 1107145503
Category : Science
Languages : en
Pages : 453

Get Book Here

Book Description
An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.

Current Developments in Optical Fiber Technology

Current Developments in Optical Fiber Technology PDF Author: Sulaiman Wadi Harun
Publisher: BoD – Books on Demand
ISBN: 9535111485
Category : Technology & Engineering
Languages : en
Pages : 602

Get Book Here

Book Description
This book is a compilation of works presenting recent advances and progress in optical fiber technology related to the next generation optical communication, system and network, sensor, laser, measurement, characterization and devices. It contains five sections including optical fiber communication systems and networks, plastic optical fibers technologies, fiber optic sensors, fiber lasers and fiber measurement techniques and fiber optic devices on silicon chip. Each chapter in this book is a contribution from a group of academicians and scientists from a prominent university or research center, involved in cutting edge research in the field of photonics. This compendium is an invaluable reference for researchers and practitioners working in academic institutions as well as industries.

Nanoscale Semiconductor Lasers

Nanoscale Semiconductor Lasers PDF Author: Cunzhu Tong
Publisher: Elsevier
ISBN: 0128141638
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies. - Provides an overview of the active field of nanostructured lasers, illustrating the latest topics and applications - Demonstrates how to connect different classes of material to specific applications - Gives an overview of several approaches to confine and control light emission and amplification using nanostructured materials and nano-scale cavities

Quantum Dot Lasers

Quantum Dot Lasers PDF Author: Victor Mikhailovich Ustinov
Publisher:
ISBN: 9780198526797
Category : Science
Languages : en
Pages : 306

Get Book Here

Book Description
The book addresses issues associated with physics and technology of injection lasers based on self-organized quantum dots. Fundamental and technological aspects of quantum dot edge-emitting lasers and VCSELs, their current status and future prospects are summarized and reviewed. Basic principles of QD formation using self-organization phenomena are reviewed. Structural and optical properties of self-organized QDs are considered with a number of examples in different material systems. Recent achievements in controlling the QD properties including the effects of vertical stacking, changing the matrix bandgap and the surface density of QDs are reviewed. The authors focus on the use of self-organized quantum dots in laser structures, fabrication and characterization of edge and surface emitting diode lasers, their properties and optimization with special attention paid to the relationship between structural and electronic properties of QDs and laser characteristics. The threshold and power characteristics of the state-of-the-art QD lasers are demonstrated. Issues related to the long-wavelength (1.3-mm) lasers on a GaAs substrate are also addressed and recent results on InGaAsN-based diode lasers presented for the purpose of comparison.