Author: Gerhard Ecker
Publisher: Springer
ISBN: 3030144798
Category : Science
Languages : en
Pages : 149
Book Description
This book provides an introduction to the current state of our knowledge about the structure of matter. Gerhard Ecker describes the development of modern physics from the beginning of the quantum age to the standard model of particle physics, the fundamental theory of interactions of the microcosm. The focus lies on the most important discoveries and developments, e.g. of quantum field theory, gauge theories and the future of particle physics. The author also emphasizes the interplay between theory and experiment, which helps us to explore the deepest mysteries of nature. "Particles, Fields, Quanta" is written for everyone who enjoys physics. It offers high school graduates and students of physics in the first semesters an encouragement to understand physics more deeply. Teachers and others interested in physics will find useful insights into the world of particle physics. For advanced students, the book can serve as a comprehensive preparation for lectures on particle physics and quantum field theory. A brief outline of the mathematical structures, an index of persons with research focuses and a glossary for quick reference of important terms such as gauge theory, spin and symmetry complete the book. From the foreword by Michael Springer: “The great successes and the many open questions this book describes illustrate how immensely complicated nature is and nevertheless how much we already understand of it.” The author Gerhard Ecker studied theoretical physics with Walter Thirring at the University of Vienna. His research focus has been on theoretical particle physics, in particular during several long-term visits at CERN, the European Organisation for Nuclear Research in Geneva. In 1986 he was promoted to Professor of Theoretical Physics at the University of Vienna. Since 1977 he has given both basic lectures in theoretical physics and advanced courses on different topics in particle physics, e.g., quantum field theory, symmetry groups in particle physics and renormalisation in quantum field theory.
Particles, Fields, Quanta
Author: Gerhard Ecker
Publisher: Springer
ISBN: 3030144798
Category : Science
Languages : en
Pages : 149
Book Description
This book provides an introduction to the current state of our knowledge about the structure of matter. Gerhard Ecker describes the development of modern physics from the beginning of the quantum age to the standard model of particle physics, the fundamental theory of interactions of the microcosm. The focus lies on the most important discoveries and developments, e.g. of quantum field theory, gauge theories and the future of particle physics. The author also emphasizes the interplay between theory and experiment, which helps us to explore the deepest mysteries of nature. "Particles, Fields, Quanta" is written for everyone who enjoys physics. It offers high school graduates and students of physics in the first semesters an encouragement to understand physics more deeply. Teachers and others interested in physics will find useful insights into the world of particle physics. For advanced students, the book can serve as a comprehensive preparation for lectures on particle physics and quantum field theory. A brief outline of the mathematical structures, an index of persons with research focuses and a glossary for quick reference of important terms such as gauge theory, spin and symmetry complete the book. From the foreword by Michael Springer: “The great successes and the many open questions this book describes illustrate how immensely complicated nature is and nevertheless how much we already understand of it.” The author Gerhard Ecker studied theoretical physics with Walter Thirring at the University of Vienna. His research focus has been on theoretical particle physics, in particular during several long-term visits at CERN, the European Organisation for Nuclear Research in Geneva. In 1986 he was promoted to Professor of Theoretical Physics at the University of Vienna. Since 1977 he has given both basic lectures in theoretical physics and advanced courses on different topics in particle physics, e.g., quantum field theory, symmetry groups in particle physics and renormalisation in quantum field theory.
Publisher: Springer
ISBN: 3030144798
Category : Science
Languages : en
Pages : 149
Book Description
This book provides an introduction to the current state of our knowledge about the structure of matter. Gerhard Ecker describes the development of modern physics from the beginning of the quantum age to the standard model of particle physics, the fundamental theory of interactions of the microcosm. The focus lies on the most important discoveries and developments, e.g. of quantum field theory, gauge theories and the future of particle physics. The author also emphasizes the interplay between theory and experiment, which helps us to explore the deepest mysteries of nature. "Particles, Fields, Quanta" is written for everyone who enjoys physics. It offers high school graduates and students of physics in the first semesters an encouragement to understand physics more deeply. Teachers and others interested in physics will find useful insights into the world of particle physics. For advanced students, the book can serve as a comprehensive preparation for lectures on particle physics and quantum field theory. A brief outline of the mathematical structures, an index of persons with research focuses and a glossary for quick reference of important terms such as gauge theory, spin and symmetry complete the book. From the foreword by Michael Springer: “The great successes and the many open questions this book describes illustrate how immensely complicated nature is and nevertheless how much we already understand of it.” The author Gerhard Ecker studied theoretical physics with Walter Thirring at the University of Vienna. His research focus has been on theoretical particle physics, in particular during several long-term visits at CERN, the European Organisation for Nuclear Research in Geneva. In 1986 he was promoted to Professor of Theoretical Physics at the University of Vienna. Since 1977 he has given both basic lectures in theoretical physics and advanced courses on different topics in particle physics, e.g., quantum field theory, symmetry groups in particle physics and renormalisation in quantum field theory.
Particles, Fields and Forces
Author: Wouter Schmitz
Publisher: Springer
ISBN: 3030128784
Category : Science
Languages : en
Pages : 322
Book Description
How can fundamental particles exist as waves in the vacuum? How can such waves have particle properties such as inertia? What is behind the notion of “virtual” particles? Why and how do particles exert forces on one another? Not least: What are forces anyway? These are some of the central questions that have intriguing answers in Quantum Field Theory and the Standard Model of Particle Physics. Unfortunately, these theories are highly mathematical, so that most people - even many scientists - are not able to fully grasp their meaning. This book unravels these theories in a conceptual manner, using more than 180 figures and extensive explanations and will provide the nonspecialist with great insights that are not to be found in the popular science literature.
Publisher: Springer
ISBN: 3030128784
Category : Science
Languages : en
Pages : 322
Book Description
How can fundamental particles exist as waves in the vacuum? How can such waves have particle properties such as inertia? What is behind the notion of “virtual” particles? Why and how do particles exert forces on one another? Not least: What are forces anyway? These are some of the central questions that have intriguing answers in Quantum Field Theory and the Standard Model of Particle Physics. Unfortunately, these theories are highly mathematical, so that most people - even many scientists - are not able to fully grasp their meaning. This book unravels these theories in a conceptual manner, using more than 180 figures and extensive explanations and will provide the nonspecialist with great insights that are not to be found in the popular science literature.
Particles And Quantum Fields
Author: Hagen Kleinert
Publisher: World Scientific
ISBN: 9814740926
Category : Science
Languages : en
Pages : 1628
Book Description
This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordinary perturbation theory, VPT produces uniformly convergent series which are valid from weak to strong couplings, where they describe critical phenomena.The present book develops the theory of effective actions which allow to treat quantum phenomena with classical formalism. For example, it derives the observed anomalous power laws of strongly interacting theories from an extremum of the action. Their fluctuations are not based on Gaussian distributions, as in the perturbative treatment of quantum field theories, or in asymptotically-free theories, but on deviations from the average which are much larger and which obey power-like distributions.Exactly solvable models are discussed and their physical properties are compared with those derived from general methods. In the last chapter we discuss the problem of quantizing the classical theory of gravity.
Publisher: World Scientific
ISBN: 9814740926
Category : Science
Languages : en
Pages : 1628
Book Description
This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordinary perturbation theory, VPT produces uniformly convergent series which are valid from weak to strong couplings, where they describe critical phenomena.The present book develops the theory of effective actions which allow to treat quantum phenomena with classical formalism. For example, it derives the observed anomalous power laws of strongly interacting theories from an extremum of the action. Their fluctuations are not based on Gaussian distributions, as in the perturbative treatment of quantum field theories, or in asymptotically-free theories, but on deviations from the average which are much larger and which obey power-like distributions.Exactly solvable models are discussed and their physical properties are compared with those derived from general methods. In the last chapter we discuss the problem of quantizing the classical theory of gravity.
Space, Time and Quanta
Author: Robert Mills
Publisher: W. H. Freeman
ISBN: 9780716724360
Category : Science
Languages : en
Pages : 416
Book Description
Publisher: W. H. Freeman
ISBN: 9780716724360
Category : Science
Languages : en
Pages : 416
Book Description
Quantum Field Theory in a Nutshell
Author: Anthony Zee
Publisher: Princeton University Press
ISBN: 1400835321
Category : Science
Languages : en
Pages : 605
Book Description
A fully updated edition of the classic text by acclaimed physicist A. Zee Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. This expanded edition features several additional chapters, as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading. The most accessible and comprehensive introductory textbook available Features a fully revised, updated, and expanded text Covers the latest exciting advances in the field Includes new exercises Offers a one-of-a-kind resource for students and researchers Leading universities that have adopted this book include: Arizona State University Boston University Brandeis University Brown University California Institute of Technology Carnegie Mellon College of William & Mary Cornell Harvard University Massachusetts Institute of Technology Northwestern University Ohio State University Princeton University Purdue University - Main Campus Rensselaer Polytechnic Institute Rutgers University - New Brunswick Stanford University University of California - Berkeley University of Central Florida University of Chicago University of Michigan University of Montreal University of Notre Dame Vanderbilt University Virginia Tech University
Publisher: Princeton University Press
ISBN: 1400835321
Category : Science
Languages : en
Pages : 605
Book Description
A fully updated edition of the classic text by acclaimed physicist A. Zee Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. This expanded edition features several additional chapters, as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading. The most accessible and comprehensive introductory textbook available Features a fully revised, updated, and expanded text Covers the latest exciting advances in the field Includes new exercises Offers a one-of-a-kind resource for students and researchers Leading universities that have adopted this book include: Arizona State University Boston University Brandeis University Brown University California Institute of Technology Carnegie Mellon College of William & Mary Cornell Harvard University Massachusetts Institute of Technology Northwestern University Ohio State University Princeton University Purdue University - Main Campus Rensselaer Polytechnic Institute Rutgers University - New Brunswick Stanford University University of California - Berkeley University of Central Florida University of Chicago University of Michigan University of Montreal University of Notre Dame Vanderbilt University Virginia Tech University
Quantum Field Theory and the Standard Model
Author: Matthew D. Schwartz
Publisher: Cambridge University Press
ISBN: 1107034736
Category : Science
Languages : en
Pages : 869
Book Description
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.
Publisher: Cambridge University Press
ISBN: 1107034736
Category : Science
Languages : en
Pages : 869
Book Description
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.
Something Deeply Hidden
Author: Sean Carroll
Publisher: Penguin
ISBN: 1524743038
Category : Science
Languages : en
Pages : 369
Book Description
INSTANT NEW YORK TIMES BESTSELLER As you read these words, copies of you are being created. Sean Carroll, theoretical physicist and one of this world’s most celebrated writers on science, rewrites the history of twentieth-century physics. Already hailed as a masterpiece, Something Deeply Hidden shows for the first time that facing up to the essential puzzle of quantum mechanics utterly transforms how we think about space and time. His reconciling of quantum mechanics with Einstein’s theory of relativity changes, well, everything. Most physicists haven’t even recognized the uncomfortable truth: Physics has been in crisis since 1927. Quantum mechanics has always had obvious gaps—which have come to be simply ignored. Science popularizers keep telling us how weird it is, how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line with this audacious yet entirely reasonable book, Carroll says that the crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of every one of us. Copies of you are generated thousands of times per second. The Many-Worlds theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. Step-by-step in Carroll's uniquely lucid way, he tackles the major objections to this otherworldly revelation until his case is inescapably established. Rarely does a book so fully reorganize how we think about our place in the universe. We are on the threshold of a new understanding—of where we are in the cosmos, and what we are made of.
Publisher: Penguin
ISBN: 1524743038
Category : Science
Languages : en
Pages : 369
Book Description
INSTANT NEW YORK TIMES BESTSELLER As you read these words, copies of you are being created. Sean Carroll, theoretical physicist and one of this world’s most celebrated writers on science, rewrites the history of twentieth-century physics. Already hailed as a masterpiece, Something Deeply Hidden shows for the first time that facing up to the essential puzzle of quantum mechanics utterly transforms how we think about space and time. His reconciling of quantum mechanics with Einstein’s theory of relativity changes, well, everything. Most physicists haven’t even recognized the uncomfortable truth: Physics has been in crisis since 1927. Quantum mechanics has always had obvious gaps—which have come to be simply ignored. Science popularizers keep telling us how weird it is, how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line with this audacious yet entirely reasonable book, Carroll says that the crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of every one of us. Copies of you are generated thousands of times per second. The Many-Worlds theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. Step-by-step in Carroll's uniquely lucid way, he tackles the major objections to this otherworldly revelation until his case is inescapably established. Rarely does a book so fully reorganize how we think about our place in the universe. We are on the threshold of a new understanding—of where we are in the cosmos, and what we are made of.
Fields and Particles
Author: Heinrich Mitter
Publisher: Springer Science & Business Media
ISBN: 3642760902
Category : Science
Languages : en
Pages : 293
Book Description
This volume contains the written versions of invited lectures presented at the 29th "Internationale Universitatswochen fiir Kernphysik" in Schladming, Aus tria, in March 1990. The generous support of our sponsors, the Austrian Ministry of Science and Research, the Government of Styria, and others, made it possible to invite expert lecturers. In choosing the topics of the course we have tried to select some of the currently most fiercely debated aspects of quantum field theory. It is a pleasure for us to thank all the speakers for their excellent presentations and their efforts in preparing the lecture notes. After the school the lecture notes were revised by the authors and partly rewritten ~n '!EX. We are also indebted to Mrs. Neuhold for the careful typing of those notes which we did not receive in '!EX. Graz, Austria H. Mitter July 1990 W. Schweiger Contents An Introduction to Integrable Models and Conformal Field Theory By H. Grosse (With 6 Figures) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 1. Introduction ............................................. . 1 1.1 Continuous Integrable Models .......................... . 1 1.2 "Solvable" Models of Statistical Physics ................. . 2 1.3 The Yang-Baxter Relation ............................. . 3 1.4 Braids and I(nots .................................... . 3 1.5 Confonnal Field Theory d = 2 ......................... . 3 2. Integrable Continuum Models - The Inverse Scattering Method - Solitons .................... . 4 2.1 A General Scheme for Solving (Linear) Problems ......... . 4 2.2 The Direct Step ...................................... . 6 2.3 The Inverse Step ..................................... .
Publisher: Springer Science & Business Media
ISBN: 3642760902
Category : Science
Languages : en
Pages : 293
Book Description
This volume contains the written versions of invited lectures presented at the 29th "Internationale Universitatswochen fiir Kernphysik" in Schladming, Aus tria, in March 1990. The generous support of our sponsors, the Austrian Ministry of Science and Research, the Government of Styria, and others, made it possible to invite expert lecturers. In choosing the topics of the course we have tried to select some of the currently most fiercely debated aspects of quantum field theory. It is a pleasure for us to thank all the speakers for their excellent presentations and their efforts in preparing the lecture notes. After the school the lecture notes were revised by the authors and partly rewritten ~n '!EX. We are also indebted to Mrs. Neuhold for the careful typing of those notes which we did not receive in '!EX. Graz, Austria H. Mitter July 1990 W. Schweiger Contents An Introduction to Integrable Models and Conformal Field Theory By H. Grosse (With 6 Figures) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 1. Introduction ............................................. . 1 1.1 Continuous Integrable Models .......................... . 1 1.2 "Solvable" Models of Statistical Physics ................. . 2 1.3 The Yang-Baxter Relation ............................. . 3 1.4 Braids and I(nots .................................... . 3 1.5 Confonnal Field Theory d = 2 ......................... . 3 2. Integrable Continuum Models - The Inverse Scattering Method - Solitons .................... . 4 2.1 A General Scheme for Solving (Linear) Problems ......... . 4 2.2 The Direct Step ...................................... . 6 2.3 The Inverse Step ..................................... .
Tales of the Quantum
Author: Art Hobson
Publisher: Oxford University Press
ISBN: 0190679638
Category : Science
Languages : en
Pages : 305
Book Description
This is a book about the quanta that make up our universe--the highly unified bundles of energy of which everything is made. It explains wave-particle duality, randomness, quantum states, non-locality, Schrodinger's cat, quantum jumps, and more, in everyday language for non-scientists and scientists who wish to fathom science's most fundamental theory.
Publisher: Oxford University Press
ISBN: 0190679638
Category : Science
Languages : en
Pages : 305
Book Description
This is a book about the quanta that make up our universe--the highly unified bundles of energy of which everything is made. It explains wave-particle duality, randomness, quantum states, non-locality, Schrodinger's cat, quantum jumps, and more, in everyday language for non-scientists and scientists who wish to fathom science's most fundamental theory.
The Biggest Ideas in the Universe
Author: Sean Carroll
Publisher: Penguin
ISBN: 0593186583
Category : Science
Languages : en
Pages : 305
Book Description
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
Publisher: Penguin
ISBN: 0593186583
Category : Science
Languages : en
Pages : 305
Book Description
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.