Author: Lisa Randall
Publisher: Harper Collins
ISBN: 0061981230
Category : Science
Languages : en
Pages : 783
Book Description
A New York Times Notable Book: A particle physicist’s “engaging and remarkably clear” look at the dimensions that may exist beyond the ones we know (The New York Times Book Review). The universe has many secrets. It may hide additional dimensions of space other than the familiar three we recognize. There might even be another universe adjacent to ours, invisible and unattainable . . . for now. Warped Passages is a brilliantly readable and altogether exhilarating journey that tracks the arc of discovery from early twentieth-century physics to the razor’s edge of modern scientific theory. One of the world’s leading theoretical physicists, Lisa Randall provides astonishing scientific possibilities that, until recently, were restricted to the realm of science fiction. Unraveling the twisted threads of the most current debates on relativity, quantum mechanics, and gravity, she explores some of the fundamental questions posed by Nature—taking us into the warped, hidden dimensions underpinning the universe we live in, demystifying the science of the myriad worlds that may exist just beyond our own. “Randall brings much of the excitement of her field to life as she describes her quest to understand the structure of the universe.” —Publishers Weekly “A great read . . . I highly recommend it.” —Ira Flatow, host of NPR’s Science Friday “Randall, a professor of physics at Harvard, offers a tour of current questions in particle physics, string theory, and cosmology, paying particular attention to the thesis that more physical dimensions exist than are usually acknowledged . . . She’s honest about the limits of the known, and almost revels in the uncertainties that underlie her work—including the possibility that some day it may all be proved wrong.” —The New Yorker
Warped Passages
Author: Lisa Randall
Publisher: Harper Collins
ISBN: 0061981230
Category : Science
Languages : en
Pages : 783
Book Description
A New York Times Notable Book: A particle physicist’s “engaging and remarkably clear” look at the dimensions that may exist beyond the ones we know (The New York Times Book Review). The universe has many secrets. It may hide additional dimensions of space other than the familiar three we recognize. There might even be another universe adjacent to ours, invisible and unattainable . . . for now. Warped Passages is a brilliantly readable and altogether exhilarating journey that tracks the arc of discovery from early twentieth-century physics to the razor’s edge of modern scientific theory. One of the world’s leading theoretical physicists, Lisa Randall provides astonishing scientific possibilities that, until recently, were restricted to the realm of science fiction. Unraveling the twisted threads of the most current debates on relativity, quantum mechanics, and gravity, she explores some of the fundamental questions posed by Nature—taking us into the warped, hidden dimensions underpinning the universe we live in, demystifying the science of the myriad worlds that may exist just beyond our own. “Randall brings much of the excitement of her field to life as she describes her quest to understand the structure of the universe.” —Publishers Weekly “A great read . . . I highly recommend it.” —Ira Flatow, host of NPR’s Science Friday “Randall, a professor of physics at Harvard, offers a tour of current questions in particle physics, string theory, and cosmology, paying particular attention to the thesis that more physical dimensions exist than are usually acknowledged . . . She’s honest about the limits of the known, and almost revels in the uncertainties that underlie her work—including the possibility that some day it may all be proved wrong.” —The New Yorker
Publisher: Harper Collins
ISBN: 0061981230
Category : Science
Languages : en
Pages : 783
Book Description
A New York Times Notable Book: A particle physicist’s “engaging and remarkably clear” look at the dimensions that may exist beyond the ones we know (The New York Times Book Review). The universe has many secrets. It may hide additional dimensions of space other than the familiar three we recognize. There might even be another universe adjacent to ours, invisible and unattainable . . . for now. Warped Passages is a brilliantly readable and altogether exhilarating journey that tracks the arc of discovery from early twentieth-century physics to the razor’s edge of modern scientific theory. One of the world’s leading theoretical physicists, Lisa Randall provides astonishing scientific possibilities that, until recently, were restricted to the realm of science fiction. Unraveling the twisted threads of the most current debates on relativity, quantum mechanics, and gravity, she explores some of the fundamental questions posed by Nature—taking us into the warped, hidden dimensions underpinning the universe we live in, demystifying the science of the myriad worlds that may exist just beyond our own. “Randall brings much of the excitement of her field to life as she describes her quest to understand the structure of the universe.” —Publishers Weekly “A great read . . . I highly recommend it.” —Ira Flatow, host of NPR’s Science Friday “Randall, a professor of physics at Harvard, offers a tour of current questions in particle physics, string theory, and cosmology, paying particular attention to the thesis that more physical dimensions exist than are usually acknowledged . . . She’s honest about the limits of the known, and almost revels in the uncertainties that underlie her work—including the possibility that some day it may all be proved wrong.” —The New Yorker
Strings, Branes And Extra Dimensions (Tasi 2001)
Author: Steven S Gubser
Publisher: World Scientific
ISBN: 981448301X
Category : Science
Languages : en
Pages : 867
Book Description
This book covers some recent advances in string theory and extra dimensions. Intended mainly for advanced graduate students in theoretical physics, it presents a rare combination of formal and phenomenological topics, based on the annual lectures given at the School of the Theoretical Advanced Study Institute (2001) — a traditional event that brings together graduate students in high energy physics for an intensive course of advanced learning. The lecturers in the School are leaders in their fields.The first lecture, by E D'Hoker and D Freedman, is a systematic introduction to the gauge-gravity correspondence, focusing in particular on correlation functions in the conformal case. The second, by L Dolan, provides an introduction to perturbative string theory, including recent advances on backgrounds involving Ramond-Ramond fluxes. The third, by S Gubser, explains some of the basic facts about special holonomy and its uses in string theory and M-theory. The fourth, by J Hewett, surveys the TeV phenomenology of theories with large extra dimensions. The fifth, by G Kane, presents the case for supersymmetry at the weak scale and some of its likely experimental consequences. The sixth, by A Liddle, surveys recent developments in cosmology, particularly with regard to recent measurements of the CMB and constraints on inflation. The seventh, by B Ovrut, presents the basic features of heterotic M-theory, including constructions that contain the Standard Model. The eighth, by K Rajagopal, explains the recent advances in understanding QCD at low temperatures and high densities in terms of color superconductivity. The ninth, by M Sher, summarizes grand unified theories and baryogenesis, including discussions of supersymmetry breaking and the Standard Model Higgs mechanism. The tenth, by M Spiropulu, describes collider physics, from a survey of current and future machines to examples of data analyses relevant to theories beyond the Standard Model. The eleventh, by M Strassler, is an introduction to supersymmetric gauge theory, focusing on Wilsonian renormalization and analogies between three- and four-dimensional theories. The twelfth, by W Taylor and B Zwiebach, introduces string field theory and discusses recent advances in understanding open string tachyon condensation. The thirteenth, by D Waldram, discusses explicit model building in heterotic M-theory, emphasizing the role of the E8 gauge fields.The written presentation of these lectures is detailed yet straightforward, and they will be of use to both students and experienced researchers in high-energy theoretical physics for years to come.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences
Publisher: World Scientific
ISBN: 981448301X
Category : Science
Languages : en
Pages : 867
Book Description
This book covers some recent advances in string theory and extra dimensions. Intended mainly for advanced graduate students in theoretical physics, it presents a rare combination of formal and phenomenological topics, based on the annual lectures given at the School of the Theoretical Advanced Study Institute (2001) — a traditional event that brings together graduate students in high energy physics for an intensive course of advanced learning. The lecturers in the School are leaders in their fields.The first lecture, by E D'Hoker and D Freedman, is a systematic introduction to the gauge-gravity correspondence, focusing in particular on correlation functions in the conformal case. The second, by L Dolan, provides an introduction to perturbative string theory, including recent advances on backgrounds involving Ramond-Ramond fluxes. The third, by S Gubser, explains some of the basic facts about special holonomy and its uses in string theory and M-theory. The fourth, by J Hewett, surveys the TeV phenomenology of theories with large extra dimensions. The fifth, by G Kane, presents the case for supersymmetry at the weak scale and some of its likely experimental consequences. The sixth, by A Liddle, surveys recent developments in cosmology, particularly with regard to recent measurements of the CMB and constraints on inflation. The seventh, by B Ovrut, presents the basic features of heterotic M-theory, including constructions that contain the Standard Model. The eighth, by K Rajagopal, explains the recent advances in understanding QCD at low temperatures and high densities in terms of color superconductivity. The ninth, by M Sher, summarizes grand unified theories and baryogenesis, including discussions of supersymmetry breaking and the Standard Model Higgs mechanism. The tenth, by M Spiropulu, describes collider physics, from a survey of current and future machines to examples of data analyses relevant to theories beyond the Standard Model. The eleventh, by M Strassler, is an introduction to supersymmetric gauge theory, focusing on Wilsonian renormalization and analogies between three- and four-dimensional theories. The twelfth, by W Taylor and B Zwiebach, introduces string field theory and discusses recent advances in understanding open string tachyon condensation. The thirteenth, by D Waldram, discusses explicit model building in heterotic M-theory, emphasizing the role of the E8 gauge fields.The written presentation of these lectures is detailed yet straightforward, and they will be of use to both students and experienced researchers in high-energy theoretical physics for years to come.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences
Particle Physics and Cosmology
Author: Howard E. Haber
Publisher: World Scientific
ISBN: 9812562125
Category : Science
Languages : en
Pages : 913
Book Description
This book contains the lecture courses conducted at the School of the Theoretical Advanced Study Institute (TASI, Colorado, USA) on Elementary Particle Physics in 2002. In this School, three series of lectures are presented in parallel in the area of phenomenology, TeV-scale physics, and astroparticles physics. The phenomenology lecture series covered a broad spectrum of standard research techniques used to interpret present day and future collider data. The TeV-scale physics lecture series focused on modern speculations about physics beyond the Standard Model, with an emphasis on supersymmetry and extra-dimensional theories. The lecture series on astroparticle physics treated recent developments in theories of dark matter and dark energy, the cosmic microwave background, and prospects for the upcoming era of gravitational wave astronomy. Contents: Phenomenology Lecture Series: Neutrinos (Y Grossman); Precision Electroweak Physics (K Matchev); Effective Field Theories (I Z Rothstein); Bottom Quark Physics and the Heavy Quark Expansion (M Luke); The Top Quark, QCD and New Physics (S Dawson); Tevatron Physics (J Womersley); TeV-Scale Physics Lecture Series: Non-Perturbative Sypersymmetry (J Terning); New Directions for New Dimensions: KaluzaOCoKlein Theory, Large Extra Dimensions and the Brane World (K R Dienes); New Ideas in Symmetry Breaking (M Quiros); Extra Dimensions and Branes (C Csaki); Astroparticle Physics Lecture Series: Introduction to Cosmology (M Trodden & S M Carroll); Dark Matter (K A Olive); Gravitational Waves from the Early Universe (A Buonanno). Readership: Researchers, academics and graduate students in high energy physics, mathematical physics and astrophysics."
Publisher: World Scientific
ISBN: 9812562125
Category : Science
Languages : en
Pages : 913
Book Description
This book contains the lecture courses conducted at the School of the Theoretical Advanced Study Institute (TASI, Colorado, USA) on Elementary Particle Physics in 2002. In this School, three series of lectures are presented in parallel in the area of phenomenology, TeV-scale physics, and astroparticles physics. The phenomenology lecture series covered a broad spectrum of standard research techniques used to interpret present day and future collider data. The TeV-scale physics lecture series focused on modern speculations about physics beyond the Standard Model, with an emphasis on supersymmetry and extra-dimensional theories. The lecture series on astroparticle physics treated recent developments in theories of dark matter and dark energy, the cosmic microwave background, and prospects for the upcoming era of gravitational wave astronomy. Contents: Phenomenology Lecture Series: Neutrinos (Y Grossman); Precision Electroweak Physics (K Matchev); Effective Field Theories (I Z Rothstein); Bottom Quark Physics and the Heavy Quark Expansion (M Luke); The Top Quark, QCD and New Physics (S Dawson); Tevatron Physics (J Womersley); TeV-Scale Physics Lecture Series: Non-Perturbative Sypersymmetry (J Terning); New Directions for New Dimensions: KaluzaOCoKlein Theory, Large Extra Dimensions and the Brane World (K R Dienes); New Ideas in Symmetry Breaking (M Quiros); Extra Dimensions and Branes (C Csaki); Astroparticle Physics Lecture Series: Introduction to Cosmology (M Trodden & S M Carroll); Dark Matter (K A Olive); Gravitational Waves from the Early Universe (A Buonanno). Readership: Researchers, academics and graduate students in high energy physics, mathematical physics and astrophysics."
Black Holes, Cosmology And Extra Dimensions (Second Edition)
Author: Kirill A Bronnikov
Publisher: World Scientific
ISBN: 9811233462
Category : Science
Languages : en
Pages : 591
Book Description
Assuming basic knowledge of special and general relativity, this book guides the reader to problems under consideration in modern research, concerning black holes, wormholes, cosmology, and extra dimensions. Its first part is devoted to local strong field configurations (black holes and wormholes) in general relativity and its most relevant extensions: scalar-tensor, f(R), and multidimensional theories. The second part discusses cosmology, including inflation and problems of a unified description of the whole evolution of the universe. The third part concerns multidimensional theories of gravity and contains a number of original results obtained by the authors. Expository work is conducted for a mechanism of symmetries and fundamental constants formation. The original approach to nonlinear multidimensional gravity that is able to construct a unique perspective describing different phenomena is highlighted.Much of the content was previously presented only in journal publications and is new for book contents, e.g., on regular black holes, various scalar field solutions, wormholes and their stability, inflation, clusters of primordial black holes, and multidimensional gravity. The last two topics are added in this new edition of the book. The other chapters are also updated to include new discoveries like the detection of gravitational waves.
Publisher: World Scientific
ISBN: 9811233462
Category : Science
Languages : en
Pages : 591
Book Description
Assuming basic knowledge of special and general relativity, this book guides the reader to problems under consideration in modern research, concerning black holes, wormholes, cosmology, and extra dimensions. Its first part is devoted to local strong field configurations (black holes and wormholes) in general relativity and its most relevant extensions: scalar-tensor, f(R), and multidimensional theories. The second part discusses cosmology, including inflation and problems of a unified description of the whole evolution of the universe. The third part concerns multidimensional theories of gravity and contains a number of original results obtained by the authors. Expository work is conducted for a mechanism of symmetries and fundamental constants formation. The original approach to nonlinear multidimensional gravity that is able to construct a unique perspective describing different phenomena is highlighted.Much of the content was previously presented only in journal publications and is new for book contents, e.g., on regular black holes, various scalar field solutions, wormholes and their stability, inflation, clusters of primordial black holes, and multidimensional gravity. The last two topics are added in this new edition of the book. The other chapters are also updated to include new discoveries like the detection of gravitational waves.
String Theory and Particle Physics
Author: Luis E. Ibáñez
Publisher: Cambridge University Press
ISBN: 0521517524
Category : Science
Languages : en
Pages : 689
Book Description
A systematic introduction to string phenomenology, outlining how string theory is connected to the real world of particle physics.
Publisher: Cambridge University Press
ISBN: 0521517524
Category : Science
Languages : en
Pages : 689
Book Description
A systematic introduction to string phenomenology, outlining how string theory is connected to the real world of particle physics.
Warped Passages
Author: Lisa Randall
Publisher: Penguin UK
ISBN: 0141012978
Category : Science
Languages : en
Pages : 594
Book Description
'Warped Passages' is an essential and accessible introduction to the science of the future. Lisa Randall has pushed back the boundaries of science and in this illustrated account she introduces the world of extra dimensions. She describes the kind of speculation that is needed even to imagine them.
Publisher: Penguin UK
ISBN: 0141012978
Category : Science
Languages : en
Pages : 594
Book Description
'Warped Passages' is an essential and accessible introduction to the science of the future. Lisa Randall has pushed back the boundaries of science and in this illustrated account she introduces the world of extra dimensions. She describes the kind of speculation that is needed even to imagine them.
Dark Matter and the Dinosaurs
Author: Lisa Randall
Publisher: HarperCollins
ISBN: 0062328514
Category : Science
Languages : en
Pages : 359
Book Description
“Takes readers on illuminating scientific adventure, beginning sixty-six million years ago, that connects dinosaurs, comets, DNA, and the future of the planet.” —Huffington Post In this brilliant exploration of our cosmic environment, the renowned particle physicist and New York Times–bestselling author of Warped Passages and Knocking on Heaven’s Door uses her research into dark matter to illuminate the startling connections between the furthest reaches of space and life here on Earth. Sixty-six million years ago, an object the size of a city descended from space to crash into Earth, creating a devastating cataclysm that killed off the dinosaurs, along with three-quarters of the other species on the planet. What was its origin? In Dark Matter and the Dinosaurs, Lisa Randall proposes it was a comet that was dislodged from its orbit as the Solar System passed through a disk of dark matter embedded in the Milky Way. In a sense, it might have been dark matter that killed the dinosaurs. Working through the background and consequences of this proposal, Randall shares with us the latest findings—established and speculative—regarding the nature and role of dark matter and the origin of the Universe, our galaxy, our Solar System, and life, along with the process by which scientists explore new concepts. In Dark Matter and the Dinosaurs, Randall tells a breathtaking story that weaves together the cosmos’ history and our own, illuminating the deep relationships that are critical to our world and the astonishing beauty inherent in the most familiar things. “Randall has woven a beautiful account of how life on Earth is intimately connected to the cosmos.” —The Daily Telegraph (UK)
Publisher: HarperCollins
ISBN: 0062328514
Category : Science
Languages : en
Pages : 359
Book Description
“Takes readers on illuminating scientific adventure, beginning sixty-six million years ago, that connects dinosaurs, comets, DNA, and the future of the planet.” —Huffington Post In this brilliant exploration of our cosmic environment, the renowned particle physicist and New York Times–bestselling author of Warped Passages and Knocking on Heaven’s Door uses her research into dark matter to illuminate the startling connections between the furthest reaches of space and life here on Earth. Sixty-six million years ago, an object the size of a city descended from space to crash into Earth, creating a devastating cataclysm that killed off the dinosaurs, along with three-quarters of the other species on the planet. What was its origin? In Dark Matter and the Dinosaurs, Lisa Randall proposes it was a comet that was dislodged from its orbit as the Solar System passed through a disk of dark matter embedded in the Milky Way. In a sense, it might have been dark matter that killed the dinosaurs. Working through the background and consequences of this proposal, Randall shares with us the latest findings—established and speculative—regarding the nature and role of dark matter and the origin of the Universe, our galaxy, our Solar System, and life, along with the process by which scientists explore new concepts. In Dark Matter and the Dinosaurs, Randall tells a breathtaking story that weaves together the cosmos’ history and our own, illuminating the deep relationships that are critical to our world and the astonishing beauty inherent in the most familiar things. “Randall has woven a beautiful account of how life on Earth is intimately connected to the cosmos.” —The Daily Telegraph (UK)
String Theory For Dummies
Author: Andrew Zimmerman Jones
Publisher: John Wiley & Sons
ISBN: 047046724X
Category : Science
Languages : en
Pages : 387
Book Description
A clear, plain-English guide to this complex scientific theory String theory is the hottest topic in physics right now, with books on the subject (pro and con) flying out of the stores. String Theory For Dummies offers an accessible introduction to this highly mathematical "theory of everything," which posits ten or more dimensions in an attempt to explain the basic nature of matter and energy. Written for both students and people interested in science, this guide explains concepts, discusses the string theory's hypotheses and predictions, and presents the math in an approachable manner. It features in-depth examples and an easy-to-understand style so that readers can understand this controversial, cutting-edge theory.
Publisher: John Wiley & Sons
ISBN: 047046724X
Category : Science
Languages : en
Pages : 387
Book Description
A clear, plain-English guide to this complex scientific theory String theory is the hottest topic in physics right now, with books on the subject (pro and con) flying out of the stores. String Theory For Dummies offers an accessible introduction to this highly mathematical "theory of everything," which posits ten or more dimensions in an attempt to explain the basic nature of matter and energy. Written for both students and people interested in science, this guide explains concepts, discusses the string theory's hypotheses and predictions, and presents the math in an approachable manner. It features in-depth examples and an easy-to-understand style so that readers can understand this controversial, cutting-edge theory.
The Universe
Author: John Brockman
Publisher: Harper Perennial
ISBN: 9780062296085
Category : Science
Languages : en
Pages : 0
Book Description
John Brockman brings together the world's best-known physicists and science writers—including Brian Greene, Walter Isaacson, Nobel Prize-winner Frank Wilczek, Benoit Mandelbrot, and Martin Rees—to explain the universe in all wondrous splendor. In The Universe, today's most influential science writers explain the science behind our evolving understanding of the universe and everything in it, including the cutting edge research and discoveries that are shaping our knowledge. Lee Smolin reveals how math and cosmology are helping us create a theory of the whole universe. Benoit Mandelbrot looks back on a career devoted to fractal geometry. Neil Turok analyzes the fundamental laws of nature, what came before the big bang, and the possibility of a unified theory. Seth Lloyd investigates the impact of computational revolutions and the informational revolution. Lawrence Krauss provides fresh insight into gravity, dark matter, and the energy of empty space. Brian Greene and Walter Isaacson illuminate the genius who revolutionized modern science: Albert Einstein. And much more. Explore the universe with some of today's greatest minds: what it is, how it came into being, and what may happen next.
Publisher: Harper Perennial
ISBN: 9780062296085
Category : Science
Languages : en
Pages : 0
Book Description
John Brockman brings together the world's best-known physicists and science writers—including Brian Greene, Walter Isaacson, Nobel Prize-winner Frank Wilczek, Benoit Mandelbrot, and Martin Rees—to explain the universe in all wondrous splendor. In The Universe, today's most influential science writers explain the science behind our evolving understanding of the universe and everything in it, including the cutting edge research and discoveries that are shaping our knowledge. Lee Smolin reveals how math and cosmology are helping us create a theory of the whole universe. Benoit Mandelbrot looks back on a career devoted to fractal geometry. Neil Turok analyzes the fundamental laws of nature, what came before the big bang, and the possibility of a unified theory. Seth Lloyd investigates the impact of computational revolutions and the informational revolution. Lawrence Krauss provides fresh insight into gravity, dark matter, and the energy of empty space. Brian Greene and Walter Isaacson illuminate the genius who revolutionized modern science: Albert Einstein. And much more. Explore the universe with some of today's greatest minds: what it is, how it came into being, and what may happen next.
Strings, Branes and Extra Dimensions
Author: Steven Scott Gubser
Publisher: World Scientific
ISBN: 9789812702821
Category : Science
Languages : en
Pages : 872
Book Description
This book covers some recent advances in string theory and extra dimensions. Intended mainly for advanced graduate students in theoretical physics, it presents a rare combination of formal and phenomenological topics, based on the annual lectures given at the School of the Theoretical Advanced Study Institute (2001) OCo a traditional event that brings together graduate students in high energy physics for an intensive course of advanced learning. The lecturers in the School are leaders in their fields. The first lecture, by E DOCOHoker and D Freedman, is a systematic introduction to the gaugeOCogravity correspondence, focusing in particular on correlation functions in the conformal case. The second, by L Dolan, provides an introduction to perturbative string theory, including recent advances on backgrounds involving Ramond-Ramond fluxes. The third, by S Gubser, explains some of the basic facts about special holonomy and its uses in string theory and M-theory. The fourth, by J Hewett, surveys the TeV phenomenology of theories with large extra dimensions. The fifth, by G Kane, presents the case for supersymmetry at the weak scale and some of its likely experimental consequences. The sixth, by A Liddle, surveys recent developments in cosmology, particularly with regard to recent measurements of the CMB and constraints on inflation. The seventh, by B Ovrut, presents the basic features of heterotic M-theory, including constructions that contain the Standard Model. The eighth, by K Rajagopal, explains the recent advances in understanding QCD at low temperatures and high densities in terms of color superconductivity. The ninth, by M Sher, summarizes grand unified theories and baryogenesis, including discussions of supersymmetry breaking and the Standard Model Higgs mechanism. The tenth, by M Spiropulu, describes collider physics, from a survey of current and future machines to examples of data analyses relevant to theories beyond the Standard Model. The eleventh, by M Strassler, is an introduction to supersymmetric gauge theory, focusing on Wilsonian renormalization and analogies between three- and four-dimensional theories. The twelfth, by W Taylor and B Zwiebach, introduces string field theory and discusses recent advances in understanding open string tachyon condensation. The thirteenth, by D Waldram, discusses explicit model building in heterotic M-theory, emphasizing the role of the E8 gauge fields. The written presentation of these lectures is detailed yet straightforward, and they will be of use to both students and experienced researchers in high-energy theoretical physics for years to come. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."
Publisher: World Scientific
ISBN: 9789812702821
Category : Science
Languages : en
Pages : 872
Book Description
This book covers some recent advances in string theory and extra dimensions. Intended mainly for advanced graduate students in theoretical physics, it presents a rare combination of formal and phenomenological topics, based on the annual lectures given at the School of the Theoretical Advanced Study Institute (2001) OCo a traditional event that brings together graduate students in high energy physics for an intensive course of advanced learning. The lecturers in the School are leaders in their fields. The first lecture, by E DOCOHoker and D Freedman, is a systematic introduction to the gaugeOCogravity correspondence, focusing in particular on correlation functions in the conformal case. The second, by L Dolan, provides an introduction to perturbative string theory, including recent advances on backgrounds involving Ramond-Ramond fluxes. The third, by S Gubser, explains some of the basic facts about special holonomy and its uses in string theory and M-theory. The fourth, by J Hewett, surveys the TeV phenomenology of theories with large extra dimensions. The fifth, by G Kane, presents the case for supersymmetry at the weak scale and some of its likely experimental consequences. The sixth, by A Liddle, surveys recent developments in cosmology, particularly with regard to recent measurements of the CMB and constraints on inflation. The seventh, by B Ovrut, presents the basic features of heterotic M-theory, including constructions that contain the Standard Model. The eighth, by K Rajagopal, explains the recent advances in understanding QCD at low temperatures and high densities in terms of color superconductivity. The ninth, by M Sher, summarizes grand unified theories and baryogenesis, including discussions of supersymmetry breaking and the Standard Model Higgs mechanism. The tenth, by M Spiropulu, describes collider physics, from a survey of current and future machines to examples of data analyses relevant to theories beyond the Standard Model. The eleventh, by M Strassler, is an introduction to supersymmetric gauge theory, focusing on Wilsonian renormalization and analogies between three- and four-dimensional theories. The twelfth, by W Taylor and B Zwiebach, introduces string field theory and discusses recent advances in understanding open string tachyon condensation. The thirteenth, by D Waldram, discusses explicit model building in heterotic M-theory, emphasizing the role of the E8 gauge fields. The written presentation of these lectures is detailed yet straightforward, and they will be of use to both students and experienced researchers in high-energy theoretical physics for years to come. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."