Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models PDF Author: Jaya P. N. Bishwal
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634

Get Book Here

Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models PDF Author: Jaya P. N. Bishwal
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634

Get Book Here

Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Parameter Estimation in Stochastic Differential Equations

Parameter Estimation in Stochastic Differential Equations PDF Author: Jaya P. N. Bishwal
Publisher: Springer
ISBN: 3540744487
Category : Mathematics
Languages : en
Pages : 271

Get Book Here

Book Description
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.

Stochastic Calculus for Finance II

Stochastic Calculus for Finance II PDF Author: Steven Shreve
Publisher: Springer
ISBN: 9781441923110
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
"A wonderful display of the use of mathematical probability to derive a large set of results from a small set of assumptions. In summary, this is a well-written text that treats the key classical models of finance through an applied probability approach....It should serve as an excellent introduction for anyone studying the mathematics of the classical theory of finance." --SIAM

The Heston Model and its Extensions in Matlab and C#

The Heston Model and its Extensions in Matlab and C# PDF Author: Fabrice D. Rouah
Publisher: John Wiley & Sons
ISBN: 1118695178
Category : Business & Economics
Languages : en
Pages : 437

Get Book Here

Book Description
Tap into the power of the most popular stochastic volatility model for pricing equity derivatives Since its introduction in 1993, the Heston model has become a popular model for pricing equity derivatives, and the most popular stochastic volatility model in financial engineering. This vital resource provides a thorough derivation of the original model, and includes the most important extensions and refinements that have allowed the model to produce option prices that are more accurate and volatility surfaces that better reflect market conditions. The book's material is drawn from research papers and many of the models covered and the computer codes are unavailable from other sources. The book is light on theory and instead highlights the implementation of the models. All of the models found here have been coded in Matlab and C#. This reliable resource offers an understanding of how the original model was derived from Ricatti equations, and shows how to implement implied and local volatility, Fourier methods applied to the model, numerical integration schemes, parameter estimation, simulation schemes, American options, the Heston model with time-dependent parameters, finite difference methods for the Heston PDE, the Greeks, and the double Heston model. A groundbreaking book dedicated to the exploration of the Heston model—a popular model for pricing equity derivatives Includes a companion website, which explores the Heston model and its extensions all coded in Matlab and C# Written by Fabrice Douglas Rouah a quantitative analyst who specializes in financial modeling for derivatives for pricing and risk management Engaging and informative, this is the first book to deal exclusively with the Heston Model and includes code in Matlab and C# for pricing under the model, as well as code for parameter estimation, simulation, finite difference methods, American options, and more.

Complex Systems in Finance and Econometrics

Complex Systems in Finance and Econometrics PDF Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1441977007
Category : Business & Economics
Languages : en
Pages : 919

Get Book Here

Book Description
Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.

Frontiers in Stochastic Analysis–BSDEs, SPDEs and their Applications

Frontiers in Stochastic Analysis–BSDEs, SPDEs and their Applications PDF Author: Samuel N. Cohen
Publisher: Springer Nature
ISBN: 3030222853
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
This collection of selected, revised and extended contributions resulted from a Workshop on BSDEs, SPDEs and their Applications that took place in Edinburgh, Scotland, July 2017 and included the 8th World Symposium on BSDEs. The volume addresses recent advances involving backward stochastic differential equations (BSDEs) and stochastic partial differential equations (SPDEs). These equations are of fundamental importance in modelling of biological, physical and economic systems, and underpin many problems in control of random systems, mathematical finance, stochastic filtering and data assimilation. The papers in this volume seek to understand these equations, and to use them to build our understanding in other areas of mathematics. This volume will be of interest to those working at the forefront of modern probability theory, both established researchers and graduate students.

Handbook of Volatility Models and Their Applications

Handbook of Volatility Models and Their Applications PDF Author: Luc Bauwens
Publisher: John Wiley & Sons
ISBN: 1118272056
Category : Business & Economics
Languages : en
Pages : 566

Get Book Here

Book Description
A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.

Mathematics of Derivative Securities

Mathematics of Derivative Securities PDF Author: Michael A. H. Dempster
Publisher: Cambridge University Press
ISBN: 9780521584241
Category : Business & Economics
Languages : en
Pages : 614

Get Book Here

Book Description
During 1995 the Isaac Newton Institute for the Mathematical Sciences at Cambridge University hosted a six month research program on financial mathematics. During this period more than 300 scholars and financial practitioners attended to conduct research and to attend more than 150 research seminars. Many of the presented papers were on the subject of financial derivatives. The very best were selected to appear in this volume. They range from abstract financial theory to practical issues pertaining to the pricing and hedging of interest rate derivatives and exotic options in the market place. Hence this book will be of interest to both academic scholars and financial engineers.

Sequential Monte Carlo Methods in Practice

Sequential Monte Carlo Methods in Practice PDF Author: Arnaud Doucet
Publisher: Springer Science & Business Media
ISBN: 1475734379
Category : Mathematics
Languages : en
Pages : 590

Get Book Here

Book Description
Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Statistical Modeling and Computation

Statistical Modeling and Computation PDF Author: Dirk P. Kroese
Publisher: Springer Science & Business Media
ISBN: 1461487757
Category : Computers
Languages : en
Pages : 412

Get Book Here

Book Description
This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement.​