Modelling and Parameter Estimation of Dynamic Systems

Modelling and Parameter Estimation of Dynamic Systems PDF Author: J.R. Raol
Publisher: IET
ISBN: 0863413633
Category : Mathematics
Languages : en
Pages : 405

Get Book

Book Description
This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.

Modelling and Parameter Estimation of Dynamic Systems

Modelling and Parameter Estimation of Dynamic Systems PDF Author: J.R. Raol
Publisher: IET
ISBN: 0863413633
Category : Mathematics
Languages : en
Pages : 405

Get Book

Book Description
This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.

Parameter Estimation in Nonlinear Dynamic Systems

Parameter Estimation in Nonlinear Dynamic Systems PDF Author: W. J. H. Stortelder
Publisher:
ISBN:
Category : Differentiable dynamical systems
Languages : en
Pages : 196

Get Book

Book Description


Parameter estimation in nonlinear dynamical systems

Parameter estimation in nonlinear dynamical systems PDF Author: Walter Johannes Henricus Stortelder
Publisher:
ISBN: 9789074795913
Category :
Languages : en
Pages : 175

Get Book

Book Description


Identification of Dynamic Systems

Identification of Dynamic Systems PDF Author: Rolf Isermann
Publisher: Springer Science & Business Media
ISBN: 3540788794
Category : Technology & Engineering
Languages : en
Pages : 705

Get Book

Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

Nonlinear system identification. 1. Nonlinear system parameter identification

Nonlinear system identification. 1. Nonlinear system parameter identification PDF Author: Robert Haber
Publisher: Springer Science & Business Media
ISBN: 9780792358565
Category : Nonlinear theories
Languages : en
Pages : 432

Get Book

Book Description


Nonlinear System Identification — Input-Output Modeling Approach

Nonlinear System Identification — Input-Output Modeling Approach PDF Author: Robert Haber
Publisher: Springer
ISBN: 9789401059206
Category : Science
Languages : en
Pages : 802

Get Book

Book Description
The subject of the book is to present the modeling, parameter estimation and other aspects of the identification of nonlinear dynamic systems. The treatment is restricted to the input-output modeling approach. Because of the widespread usage of digital computers discrete time methods are preferred. Time domain parameter estimation methods are dealt with in detail, frequency domain and power spectrum procedures are described shortly. The theory is presented from the engineering point of view, and a large number of examples of case studies on the modeling and identifications of real processes illustrate the methods. Almost all processes are nonlinear if they are considered not merely in a small vicinity of the working point. To exploit industrial equipment as much as possible, mathematical models are needed which describe the global nonlinear behavior of the process. If the process is unknown, or if the describing equations are too complex, the structure and the parameters can be determined experimentally, which is the task of identification. The book is divided into seven chapters dealing with the following topics: 1. Nonlinear dynamic process models 2. Test signals for identification 3. Parameter estimation methods 4. Nonlinearity test methods 5. Structure identification 6. Model validity tests 7. Case studies on identification of real processes Chapter I summarizes the different model descriptions of nonlinear dynamical systems.

The Koopman Operator in Systems and Control

The Koopman Operator in Systems and Control PDF Author: Alexandre Mauroy
Publisher: Springer Nature
ISBN: 3030357139
Category : Technology & Engineering
Languages : en
Pages : 568

Get Book

Book Description
This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.

Optimal Estimation of Dynamic Systems

Optimal Estimation of Dynamic Systems PDF Author: John L. Crassidis
Publisher: CRC Press
ISBN: 0203509129
Category : Mathematics
Languages : en
Pages : 606

Get Book

Book Description
Most newcomers to the field of linear stochastic estimation go through a difficult process in understanding and applying the theory.This book minimizes the process while introducing the fundamentals of optimal estimation. Optimal Estimation of Dynamic Systems explores topics that are important in the field of control where the signals receiv

Numerical Data Fitting in Dynamical Systems

Numerical Data Fitting in Dynamical Systems PDF Author: Klaus Schittkowski
Publisher: Springer Science & Business Media
ISBN: 1441957626
Category : Computers
Languages : en
Pages : 406

Get Book

Book Description
Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.

Dynamic Systems Models

Dynamic Systems Models PDF Author: Josif A. Boguslavskiy
Publisher: Springer
ISBN: 3319040367
Category : Science
Languages : en
Pages : 201

Get Book

Book Description
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamics or biological sequence analysis. The technical material is illustrated by the use of worked examples and methods for training the algorithms are included. Dynamic Systems Models provides researchers in aerospatial engineering, bioinformatics and financial mathematics (as well as computer scientists interested in any of these fields) with a reliable and effective numerical method for nonlinear estimation and solving boundary problems when carrying out control design. It will also be of interest to academic researchers studying inverse problems and their solution.